
Models and Basic Concepts 

In this chapter we introduce three basic project schcduling problems: the 
time-constraincd projcct schcduling problcrn, the resourcc-constrained proj- 
ect scheduling problem with renewable resources, and the resource-constrained 
project scheduling problcrn with cumulative resources. The time-constrained 
project scheduling problem consists in scheduling the activities of a project 
such that all temporal constraints are satisficd and somc objective function 
is optimized. Wc revicw how tcrnporal schcduling of the project can be per- 
formed by solving specific time-constrained project scheduling problcms. We 
distinguish bctwccn two typcs of rcsourccs, namely renewable and curnulativc 
resources, depending on whether or not resource availability at a givcn point 
in time is affected by thc complcte past project evolution. For both types 
of resources we show how to copc with resourcc constraints by establishing 
precedence relationships among the activities from so-called forbidden sets, 
whose joint resourcc rcquircments cxcced the resource availability. 

1.1 Temporal Constraints 

1.1.1 Time-Feasible Schedules 

A projcct can bc considcred to be a sct of intcracting tasks requiring time and 
rcsourccs for their completion. The structural analysis of the project provides 
a decomposition of the tasks into a set V of activitics and a sct E of prece- 
dence relationships among thcm. Sct V consists of n activitics i = 1,. . . , n 
to be scheduled and two auxiliary activitics 0 and n + 1, reprcscnting the 
projcct beginning and the project termination, respectively. The precedence 
relationships can be rcpresented as activity pairs ( i , ~ )  wherc i # j, saying 
that the start time of activity i affects the earliest start time of activity j .  
Thus, E c V x V is some irreflexivc relation in set V. Note that this relation 
may not be asymmetric if there arc two activities i , ~  E V which mutually 
influence their earliest start times. Thc timc cstimation associates a duration 
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pi E Z>o with each activity and a tirne lag hij E Z with each pair (i, j) E E. 
An activity i E V is referred to as fictitious activity or event if pi = 0. Oth- 
erwise, we speak of a real activity. The project beginning and termination, 
the receipt of materials, or ndcstones are examples of events. V a  and V e  
respectively denote the sets of real activities and events of the project. We 
assume that the real activities must not be interrupted once they have been 
begun. Let Si  denote the start time of activity i ,  which has to be determined 
when scheduling the project in the temporal scheduling and resource alloca- 
tion steps. If i is a fictitious activity, Si  is also termed the occurrence time of 
event i. The tirne lags Sij give rise to the temporal constraints 

If ( i ,  j )  E E ,  activity j cannot be started earlier than f i i j  units of time after the 
start of activity i. A nonnegative value of Sij corresponds to a rninimum t ime 
lag d:YYL = Sij > 0 between activities i and j, whereas a negative value of bij 
can be viewed as a max imum t ime lag d g a x  = -hij > 0 between activities j 
and i. If dg2" = pi, inequality (1.1) is referred to as a precedence constraint 
between activities i and j .  For what follows, we establish the following con- 
vention. 

Remark 1.1. The project is started at time 0 and must be completed by a 
prescribed deadline 2, i.e., So = 0 and 5 2. The deadline is represented - 
as a maximum time lag dzErf l  = d between the project beginning 0 and the 
project termination n + 1. 

The temporal constraints (1.1) connect the start times of activities i and j. 
Since by assumption activities must not be interrupted when being in progress, 

is the completion time of activity i .  Thus, start-to-start, start-to-completion, 
completion-to-start, and completion-to-completion relationships among activ- 
ities can easily be transformed into one another (cf. cg . ,  Bartusch et al. 1988). 

Remark 1 . 2  Some constraints that occur frequently in practice can be mod- 
elled by minimum and maximum time lags between activities (see Neumann 
and Schwindt 1997): 

(a) Release date ri for the start of activity i (hcad of i ) :  d;li7" - r i .  
(b )  Deadline & for the completion of activity i E V: d;;,""" = di - pi. 
(c) Quarantine time qi after the completion of activity i (tail of i): 

dm27L 
z,n+l = Pi f 4i 

(d) Fixed start time t i  for activity i: dL2zn = d7naz 0- - --ti .  
(e) Simultaneous start of activities i and j :  d r "  = d T a x  = 0. 
( f )  Simultaneous conipletiori of activities i and j with pi > pj :  

dmin = &?all- = p .  - p 
23 23 2 3 '  
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(g) Consecutive execution of activities i and j without any delay in between: 
dmzn = dmax = pi. 

2, 23 
(h) Overlapping of activities i and j for at least xij < min(pi,pj) units of 

time: dZux = pi - 2 . .  dmax - 
231  ,z - p j  - xij. 

From C, = S, + p, it follows that thc schedule for executing the activi- 
ties i E V of the project is uniquely given by specifying the respcctivc start 
times S,. That is why we shall always represent solutions to project scheduling 
problenis by a vector of activity start times. 

Definition 1.3 (Time-feasible schedule). A vector S = (So, S1, . . . , 
of start times for the activities where Si 2 O ( i  E V )  and So = 0 is called 
a schedule. Schedule S is said to be time-feasible if it satisfies the temporal 
constraints (1.1). The set of all time-feasible schedules is denoted by ST. 

Obviously, set ST represents an integral polytope in IW;:'. Assume that 
ST # 0. It is well-known that thc partially ordered set -(ST, <) possesscs 
exactly one minimum ES, where S < S' precisely if Si < S,! for all i E V. 
We rcfcr to ES as the earliest schedule. Furthermore, by Remark 1.1 (ST, <) 
possesses exactly one maximum LS, which is termed the latest schedule. This 
mcans that there is no timc-feasible schedule S such that Si < ESi or Si > LSi 
for any i E V. The interval [ES,, LSi] is termed thc time window (for the start) 
of activity i .  

Now let f : ST -+ EX be an objective function assigning a value f (S) to 
each time-fcasible schcdulc S .  Without loss of gcnerality we assume that thc 
objective function has to be minimized. The basic time-constrained project 
scheduling problem can then be stated as follows: 

1 Minimize f (S) 1 
subject to S E ST 

Definition 1.4 (Time-optimal schedule). A time-feasible schedule S solv- 
ing the time-constrained project scheduling problem (1.2) is called time- 
optimal. 

All objective functions that will be considercd in this book arc lower scrni- 
continuous, i.e., any lower-level set L, = {S E ST I f (S )  < a), a E IR, is 
closcd. Since sct ST is compact, this property ensures that there always exists 
a time-optimal schedule provided that ST # 0. 

1.1.2 Project Networks 

In this subsection we shall show how thc activitics i E V and the tempo- 
ral constraints S, - S, > 6,, for ( i , j )  E E can be represented by a project 
net.cuork. Basically, thcrc are thrce different types of project networks. Actzvity- 
on-arc or CPM networks associatc an arc ( u , v )  with each activity i ,  where 
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the nodes u and u represent events (see Kelley 1961). CPM stands for "Crit- 
ical Path Method", a temporal scheduling method based on activity-on-arc 
networks. u is the first start of all activities i bclonging to  arcs emanating 
from nodc u, whereas v is the last completion of all activitics i bclonging to 
arcs terminating at  riode u. Arc (u, u) is weighted by the duration pi of the 
corresponding activity i .  Though only precedence constraints can be modclled 
by CPM nctworks, this type of project network is widcly used in practice. In 
gencral, dummy activitics havc to bc introduced for modelling the precedence 
constraints among the activities arid there is no uniquc reprcsentation of the 
projcct as a CPM network. The problem to assign a CPM nctwork to the 
project in question using a minimum number of dummy activities is known to 
bc NP-hard (cf. Garcy and Johnson 1979, problcm ND44). Neurnann (1999~)  
devises an O(n7 timc algorithm for thc construction of a CPM network with 
a small nurnbcr of dummy activities, which is based on a proccdure by Brucker 
(1973). 

In activity-on-node networks, the nodcs are identified witli the activities. 
For each timc lag dij, the network contains one arc (i, j) witli initial nodc i 
and tcrminal node j, i.e., V is the riode set and E is the arc set of the nctwork. 
An arc (i, j) E E is weighted by dij. Activity-on-node networks belong to  the 
class of MPM networks (cf. Roy 1964, Sect. 11.2.1). MPM is thc acronym of 
"Metra Potential Mcthod", the tcmporal scheduling rricthod for activity-on- 
riode networks to be discussed in Subsection 1.1.3. Similar to CPM, MPM is 
based on calculating longest directed paths in the project network. Obviously, 
activity-on-node networks can cope with general temporal constraints. In ad- 
dition, due to  the one-to-onc correspondcncc betwccn prcccdencc relationships 
and arcs, thcre is a unique activity-on-node representation of the project (cf. 
Neumann and Schwindt 1997). 

Elnmghraby and Karnburowki (1992) havc introduced the following event- 
on-node network. Each real activity i is represented by two events is and ic in 
node set V. is corrcsponds to the start and ic to the completion of activity i .  
Both nodes arc linked by two arcs (is, iC) and (iC, is) with wcights diic = p, 
and hicis = -pi. For each time lag Si j  between activities i and j ,  arc set E 
contains ail arc (iC, jS) with weight diCj3 = dij -pi .  Analogously to activity- 
on-node networks, the arcs of the resulting MPM network can be intcrprcted 
as minimum arid maxinlum t h e  lags between the incident events. The arcs 
(is, iC) and (iC,is) state that the completion of activity i must occur cxactly 
pi units of time after its start, i.e., activity i must not be interrupted. The 
arcs (ic, js) rcpresent completion-to-start time lags between activities i and j .  

Example 1.5. We consider a projcct with four real activities i = 1 ,2 ,3 ,4  for 
which we assume that activitics 3 and 4 cannot be started before activities 1 
a i d  2 have been completed. The project must bc conlplctcd by a prcscribed 
deadline d. Figurc l . l a  shows the corresponding activity-on-arc project net- 
work, where the dashed-line arcs represent dummy activitics rcquircd for mod- 
elling the precedcncc relationships. The arcs are labelled with the durations 
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of the respective activities. Thc activity-on-nodc network of the project is 
shown in Figure l . l b ,  where square nodes correspond to real activitics and 
circular nodes represent events. By splitting up each real activity into a start 
and a completion event, onc obtains thc representation of the project as an 
event-on-node network, which is shown in Figure 1 . 1 ~ .  

Fig. 1.1. Types of project networks: (a) activity-on-arc network; (b) activity-on- 
node network; ( c )  event-on-node network 

Throughout this monograph, we shall represent projects by MPM nct- 
works. If not stated otherwise, the project network is an activity-on-node net- 
work. Event-on-node networks will be used when dealing with project sched- 
uling problems whcre events instead of activities takc up resourccs (the case 
of cumulative resources treated in Section 1.3). 

1.1.3 Temporal Scheduling Computations 

In this subsection we review thc Metra Potential Method for the temporal 
scheduling of the projcct. Lct N = (V, E, 6) bc the MPM network under con- 
sideration, where 6 = (6z3)(2,3)EE denotes the vector of arc weights. Temporal 
schcduling consists of 

(a) computing earliest and latest start time of activitics, 
(b) finding the shortest projcct duration, 
(c) calculating total floats, early frcc floats, and latc free floats of activities, 

and 
(d) idcntifying the critical activities with zcro total float 
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with respect to the temporal constraints (1.1). 
A vector ?r E R71+2 is called a potentzal on project network N if thc cor- 

responding tensions ?rJ - T, are greater than or equal to the respective lower 
bourids 6,, (cf. Berge 1970, Sect. 5.3). Let S be some schedule and assume that 
ST # @. Clcarly, S is a potential on N if and only if schedule S is time-feasible. 
Thc earliest schcdulc ES thus corrcsponds to the componentwise minimal po- 
tential ?r 2 0, and the latest schedule L S  equals thc componentwise rriaxinial 
potential ?r 2 0 with ?ro = 0 (and thus ?rn+l < 2, scc Rcmark 1.1). In other 
words, ES is the unique solution to the following minimization problcm: 

Minimize x,icv n,~ 
subject to .irj - .iri > hij ((i ,  j) E E )  (1.3) 

xi > 0 (i E V) 

Problcm (1.3) corresponds to thc time-constrained optimization problem (1.2) 
whcrc f (S) = CiEv Si. The latcst schedule L S  is obtained by solving (1.3) 
with objcctivc function - CiEv .iri and additional constraint TO = 0. 

Now let D = (dij)ijEv bc the matrix solving the following system of 
equations 

The values dij can bc intcrprctcd as time lags between activities i and j which 
are induced by the set of given time lags hij ((i ,  j) E E ) .  

Remarks 1.6. 

(a) Due to Sij E Z for all (i, j )  E E, matrix D is intcgral as well. 
(b) For each activity i E V, we assume that doi 2 0 (i.e, activity i cannot 

be started before the project beginning) and di,,+l > pi (i.e., the projcct 
cannot be terminated before all activities have been complctcd). 

(c) Each node i E V in project network N is reachable from nodc 0 and 
node n + 1 is reachable from each node i E V. Since we always have a - 
maximum time lag dTE"+ = --6,+1,0 = d bctween the project beginning 
arid the project termination and thus ( n  + 1,0) E E, project network N 
is strongly conncctcd. 

(d) Without loss of generality we assume that 2 is the latcst project termina- 
- 

tion time, LC., d,+l,o = d. 
(e) The minimum time lag between the project beginning and activity i equals 

the earliest start time ESi of activity i ,  i.c., 

( f )  Likcwise, the maximum time lag between the project beginning and ac- 
tivity i equals the latest start time of activity i ,  i.e., 



1.1. Temporal Constraints 13 

If thcrc is no given maximum time lag di;"'" -die between the project 
beginning and activity i ,  thcn LSi = 2 - di,,,+l. 

(g) The earliest and latest completion times of activity i are 

ECi = ESi +pi  and LCi = LSi + pi (i  E V) 

Recall that a directed walk in network N is a sequence (ill ia, . . . , i,) of 
nodes of N such that (i,, i,+l) E E for all p = 1 , .  . . , u - 1, where the sum 

c&,~,,+~ is referred to as the length of the directed walk. A dirccted 
walk without any rcpctition of nodes is called a directed path. A directed 
cycle is a directed walk ( i l l  i 2 , .  . . , i , , i l )  such that ( i l ,  i 2 , .  . . , i,) is a directcd 
path. Thc lower cquations in (1.4) correspond to the Bellman equations for 
calculating longest directed walks in MPM networks. Thus, each induced time 
lag dij coincides with the length of a longest directed walk from node i to  
nodc j, providcd that there is such a longest directed walk. Since according to  
Remark 1 . 6 ~  network N is strongly connccted, thcre is always a directed walk 
in N from any node i E V to any node j E V. In Roy (1962) it is shown that 
there exists a longest directed walk from any node i E V to any node j E V 
in N if and only if N does not contain any directed cycle of positive length. 
On the other hand, system of equations (1.4) possesses a solution precisely if 
there is a longest directed walk from i to j for all i , j  E V. In thc latter case, 
the longest directed walks in N coincide with the longest directcd paths in 
N, and D = (dzj)i,3EV is called the distance matrix of N. Thus, we havc thc 
following proposition. 

Proposition 1.7 (Roy 1962). There is a time-feasible schedule for a project 
(Le., ST # 0) if and only if project network N does not contain any directed 
cycle of positive length. 

Let m := IEI dcnote the number of arcs in projcct network N. Prob- 
Icm (1.3) can be solved in U ( m n )  time by the label-correcting proccdure 
shown in Algorithm 1.1 (cf. Bellman 1958), where Q is a queue. Although 
this algorithm has becn dcvised more than four dccadcs ago, it is still the 
most efficient algorithm for solving longest-path problems in cyclic networks 
with arbitrary arc wcights. Thc proccdurc may bc tcrrninated if some node i 
has becn examined n + 2  times (see, e.g., Ahuja et al. 1993, Sect. 5.5). In that 
case, (1.3) is unsolvable and thus ST = 0, which means that contradictory 
temporal constraints have been specified. 

Thc solution D to equations (1.4) is the elementwisc minimal matrix sat- 

This formulation gives rise to the following Algorithnl 1.2 by Floyd and War- 
shall (cf. Floyd 1962) for computing distances dij for all i , j  E V. After having 
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-- 

Algorithm 1.1. Earliest schedule 

Input: MPM project network N = (V, E ,  6 ) .  
Output: Earliest schedule ES. 

set doo :=O, Q := {0), and doi := -cc for a l l i  E V \ Q ;  
while Q f 0 do 

dequeue i from Q; 
for all (i, j )  E E with doj < do, + 6,, do 

set do, := do, + 6,,; 
if j $! Q then enqueue j to Q; 

return earliest schedule ES = (do , ) iEv ;  

initialized thc values dij according to the prescribed time lags 6ij, tllc algo- 
rithm computes the transitive closure of those time lags by itcrativcly putting 
into force the triangle inequalities 

(1.5) and thus (1.4) is solvable exactly if the matrix D calculated by thc 
Floyd-Warshall algoritlin~ satisfies d,, = 0 for all i E V. The number of corn- 
putations performed is O(n"), which is the best possible time complexity for 
this problem (note that for chccking whether or not distances d,, satisfy (1.5), 
U(n3) triangle incqualitics must bc cvaluatcd). 

Algorithm 1.2. Distance matrix 

Input: MPM project network N = (V, E ,  6 ) .  
Output: Distance matrix D. 

for all i ,  j E V do 
if ( i , j )  E E then set d,, := hi,; elsif i = j set d i j  := 0; else set d,, := -m; 

for all h,i ,  j E V with dih > -00 and d,,, > -m do 
if d,, < d,h + dhj then set di j  := d,h + d h j ;  

return distance matrix D = ( d i , ) r , , 7 E ~ ;  

The next algorithm, which is duc to Bartusch et al. (1988), achieves the 
updatc of thc distance matrix D in U(n2)  time when adding some arc (i, j )  
to  tllc project network (see Algorithm 1.3). The calculation of the distance 
matrix D from scratch by initializing the values dij as in the Floyd-Warshall 
algoritlini and then applying the algoritl~rrl for all arcs ( i ,  j )  E E would re- 
quire 0 ( m n 2 )  time, which is more cxpensivc than using the Floyd-Warshall 
algorithm. The formcr procedure, however, will prove useful later on when 
dealing with resource constraints and the resolution of so-called resource con- 
flicts, where individual arcs are added to N. 
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Algorithm 1.3. Addition of arc (i, j) with weight S,, 

Input: Distance matrix D, an arc ( 2 ,  j) with weight 6,, 
Output: Updated distance matrix D. 

for all g ,  h E V do 
if dgtL < dgZ + d2, + d 7 h  then set d g h  := d,, + S,, + d I h ;  

return distance matrix D = (d,,),,,tv; 

Remark 1.8. Thc updatc of distarlces dol, (or, cquivalcntly, carlicst start  times 
ES,,) after the addition of sorne arc (i ,  j )  to project network N can be pcr- 
formed in (3(n) time by putting doh := max(dOh, doi + hij + djh) for all h E V. 
This can easily be seen by using thc fact that the correctncss of Algorithm 1.3 
docs not depend on the sequence in which pairs (g, h) are iterated. Symmetri- 
cally, distances dyO (which coincide with the negative latest start  timcs -LS,) 
can be updated by putting dgo := max(dqO, dgi +dij +djO) for all g E V. Morc- 
over, adding somc arc (0, j )  to N does not affect distances dio (i E V) and 
adding sorne arc (i,O) to  N does not affect distances doj ( j  E V). 

Proposition 1.9 shows that the creation of a directed cycle of positive 
length whcn adding arc ( i ,  j) to N can be tcstcd bcfore calling Algorithm 1.3. 

Proposition 1.9. Let N be a project network with distance matrix D. The 
addition of arc (i, j) with weight hij to N generates a directed cycle of positive 
length if and only if ifij > -dji. 

Proof. Suficiency: After the addition of arc ( i , j )  with hij > -dj, to  N it 
holds that dij > hij. Thus, we have dij + dji > hij + dji > 0, which means 
that there is a directed cycle of positive length containing nodes i and j. 

Necessity: Now assume that hij < -dji and consider an itcration of Al- 
gorit lm 1.3 for somc pair (g, h) such that distance dyh is increased. Then 
the updatcd distancc is dyl, = dyi + hi3 + dJh < dyi - dji + djh. The trian- 
glc incqualitics (1.6) say that dji > djh + dlLg + dgi and thus dglL + dhg < 
dgi - (djh + dhg + dgi) + djh + dhg = 0. This means that after applying Al- 
gorithm 1.3 it holds that dgh + dhg 5 0 for all g, h E V, i.e., N contains no 
directed cycle of positive lcngth. 0 

Next, we consider three different floats or slack times of an activity i E V. 
The total float TFi is the maximum amount of time by which the start  of 
activity i can be delayed beyond its earliest start  time ESi such that the 
project is tcrminated on time, i.e., 5 2. In other words, 

Activity i E V is called critical if i cannot be delayed, i.e., if the maximum 
time lag -die cquals the nlinimurri time lag doi between the project beginning 
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and activity i arid thus fixes the start time Si of i to  ESi = LSi. Activity i is 
critical exactly if TFi = 0. 

The early free float EFFi is the maximum amount of time by which the 
earliest start of activity i a t  time ESi can increase given that any other 
activity j can be begun at  its earliest start time ESj .  Hence, 

EFFi = rnin (ESj - Gij )  - ESi = niin (do? - d,,) - do, (i  E V )  
( z , j ) E E  jtV:i#j 

The late free float LFF, is the maxinium amount of time by which the latest 
start of activity i at time LS, can decrease given that any other activity j can 
bc bcgun at  its latest start times LSJ. Thus, 

LFFi  = LSi - max (LSj + Sji) = min (& - dji) - di0 (i E V )  
(3 , i )EE  jEV:i#j 

1.2 Renewable-Resource Constraints 

To pcrforrn the activities of a project, different types of resourccs arc rcquircd. 
Basically, we may distinguish bctwccn rcsources whose availability solely de- 
pends on the activities being in progress (like manpower or machinery) and 
rcsolirccs for which the availability results from the erit,ire project history 
(such as thc project budget, materials, or storage space). In this scction we 
deal with renewable resources, which belong to  thc formcr type and to  which 
thc ovcrwhelming part of research in the field of resource-constrained project 
scheduling has been dedicated. The case of cumulative resources, corrcspond- 
irig to  the second type, will bc discusscd in Section 1.3. In the present section, 
we suppose that no cumulative resourccs need to  be considcred. At first, we 
providc a formal statemerit of the constraints arising from thc scarcity of rc- 
newable rcsources. We are then concerned with conditions on the start times of 
activities whose joint rcquireincnts for rcnewablc resources exceed the resource 
capacities and which thus caririot be in progress sirnultancously. Finally, we 
discuss consistency tests for detecting temporal constraints that are irnplicd 
by the limited availability of rcnewablc rcsources. 

1.2.1 Resource-Feasible Schedules 

Let RP be the set of renewable resources k with capacity Rk  E N U {a} 
that have been assigned to thc project during the project definition phase. 
Rk  = a means that the availability of resource k is not explicitly bounded 
from above but can bc adaptcd, at a certain cost, to any usage over time. 
The resource estimation yields (resourcc) requirements r i k  E ZzO for each 
real activity i E V" and each resource k E R P .  r i k  corresponds to the number 
of capacity units of resource I; which are taken up for processing activity i 
from start time Si (inclusively) to complction time Ci = Si +pi (exclusively). 
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r i k  = 0 means that activity i does not use resource k. Furthcrmore, we assume 
that 

r i k  5 Rk (i E V u ,  k E RP) 

which cnsures that sufficient rcsourcc capacity is available for processing each 
activity individually. For simplicity, we may onlit resource index k whcn thcre 
is only one renewable resource available. 

Now lct S be somc schedulc and lct t be somc point in time. Then 

is the acti,ue set of activities being in progress at time t .  Thc corresponding 
requirement for resource k E R P  at time t is given by 

For given schedule S, function r k ( S ,  .) : R -7' Z>O is tcrmcd the loading profile 
for renewable resource k .  rk(S, .) is a right-corTtinuous step function with at 
most 2n jump discontinuities. Obviously, we have r k ( S ,  t )  = 0 for all t < 0. 

The renewable-resource constraints can be stated as follows: 

Definition 1.10 (Resource-feasible and feasible schedules). A sched- 
ule S satisfying the renewable-resource constraints (1.7) is called resource- 
feasible with respect to renewable resources k E R P .  The set of all resource- 
feasible schedules is denoted by SR.  S := ST n SR is the set of all feasible 
schedules. 

As wc shall see later on, unlike the polytope of tirnc-feasible schcdules ST,  
set SR represents a finite union of polytopes which is generally not connected. 
As an intcrscction of a polytopc and a finite union of polytopcs, S is the union 
of finitely many polytopes as well. Resource allocation consists in assigning 
start times Si (and thus cxccution time intervals [Si, Ci[) to the activities of 
the projcct such that the corresponding schedule S = (Si)iEv is fcasiblc and 
minimizes the objective function on set S .  

The basic resource-constrained project scheduling problem with renewable 
resources rcads as follows: 71 

subject to S E ST n SR 

Rccall that we have assumed objective function f to be lower semicontin- 
uous. The compactncss of S then irnplics that thcrc cxists an optimal solution 
to problem (1.8) prcciscly if S # 0. Note, howcver, that duc to the prcscnce 
of maximum time lags it may happen that ST # 0 and Sn # 0 but S = 0. 
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Definition 1.11 (Optimal schedule). A feasible schedule S solving the 
resource-constrained project scheduling problem (1.8) is  called optimal. 

By replacing the set S = ST n Sn of feasible schedules with the set 
of rcsource-feasible schedules SR we obtain the temporal relaxatzon of the 
resource-constrained project scheduling problerri (1.8). Since we have assumed 
that r,k 5 Rk for all z E V" and all k E RP, each schedulc carrying out the 
activities one after another is resourcc-fcasible. The resource relaxatzon of 
(1.8) arises from deleting the resource constraints (1.7) or, equivalently, set- 
ting Rk := cc for all k E R". The resource relaxation coincides with the basic 
time-constrained project scheduling problem (1.2). As we noticed in Subscc- 
tion 1.1.3, the existence of a time-feasible schedule can be checked in O(mn) 
time by applying Algorithm 1.1 to project network N. The following theorem, 
however, shows that it cannot be decided in polynomial time whether or not 
there exists a feasible schedulc. 

Theorem 1.12 (Bartusch et al. 1988). The following decision problem is 
NP-complete. 

Instance: A project with one renewable resource and requirements 
r ,  = 1 for all i 6 V".  

Question: Does there exist a feasible schedule? 

Proof. The feasibility of a given schedule S can be checked by computing 
Sj - 5'2 for all arcs ( i , j )  E E of project network N as well as the resource 
requirements rk(S, t )  for all resources k E R P  and all start times t = Si of 
real activities i E Vu .  Thus, verification of schedule feasibility can be done in 
polynomial time, and the problem to decide upon the existence of a feasiblc 
schedule belongs to NP. In Bartusch et al. (1988) it is shown by transformation 
from problem PRECEDENCE CONSTRAINED SCHEDULING with m processors 
and strict order + that the decision problern whether or not S # Q) is NP- 
hard. An equivalent instance of the latter problern is obtained by considering 
one renewable resource with capacity R = m and choosing ri = 1, pi = 1, 
dmin 02 = 0, dy:"+l = 1 for all i E V a ,  as well as diyi"" 1 if i + j and dT2Tl = 3. 

0 

When dealing with the projcct duration problem, we may drop the as- 
sumption that there is a deadlinc 2 on the project termination because the 
objective is to maximize the slack 2 - of the deadline constraint. The 
constructiori of a feasiblc schedule then turns into an easy problem if there 
are no maximum time lags given. In that case, projcct network N is acyclic, 
and the activities can be schcdlilcd consecutively according to any topological 
ordering of the nodes z E V of N. 
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1.2.2 Forbidden Sets and Delaying Alternatives 

The resource-feasibility of schedules is closely related to the concept of forbid- 
den sets introduced by Radcrmacher (1978). The forbidden-set perspective of 
resource constraints is useful for investigating the set S of feasible schedules. 

Definition 1.13 (Forbidden and feasible sets). A se t  of real acti.uities 
F C: V a  i s  called a forbidden set if there i s  s o m e  resoflurce k E R P  such  that  

If F i s  C - m i n i m a l  in t h e  set of all forbidden sets ,  w e  speak of a m i n i m a l  
forbidden set.  B y  3 *we denote  the  set  of all m i n i m a l  forbidden sets.  A set  
A c V Q  that  i s  n o t  forbidden i s  termed a feasible set.  A i s  said t o  be a 
max imal  feasible set  if it i s  C - m a x i m a l  in the  set  of all feasible sets.  

When solving the rcsourcc-constraincd project scheduling problem (1.8), 
the activities from a forbidden set F must be scheduled in such a way that 
they do not all overlap in timc. In othcr tcrms, each forbidden set F has to 
be partitioned into a feasible sct A and some nonempty set B, no activity 
from set B being executed simultaneously with all activities from set A. In 
litcraturc, such a set B is called a delaying alternative (cf. e.g., Cliristofides 
et al. 1987 or Demculcmcestcr and Herroelen 1992, 1997). 

Definition 1.14 (Delaying alternative). Let  F be a forbidden set.  B 5 F 
i s  called a delaying alternative for F if F \ B is  a feasible set.  If  additionally 
B i s  C - m i n i m a l  in the  set  of all delaying alternatives for  F (i.e., F \ B i s  a 
max imal  feasible set ) ,  we  speak of a m i n i m a l  delaying alternative for  F .  

Thc number of minimal delaying alternativcs for a forbidden set F grows 
exponcntially in the cardinality of set F. Givcn somc forbiddcn set F and a 
subset B 5 F, it can be decided in polynomial time whether or not B is a 
minimal delaying alternative for F by cvaluating the following two conditions 
(1.9) and (1.10). This can be achieved in O(1RPIIFI) time. 

rik: < Rk for all k E R P  
ZEF\B 

rik: + minqk: > Rk: for some k E R P  

iEF\B 3EB 

Neverthclcss, Neumann et al. (2003b)  have shown that a minimal dclay- 
ing alternative B cannot be generated efficiently by itcrativcly transferring 
activities from sct F to set B. 
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Proposition 1.15 (Neumann et al. 2003b, Sect. 2.5). The following de- 
cision problem is NP-complete. 

Instance: A project with one renewable resource, a forbidden set F, 
and an activity h E F. 

Question: Does there exist a minimal delaying alterr~ative B for F 
containing h ? 

Proof. Since conditions (1.9) and (1.10) can be verificd in polynomial time, 
the problem is contained in NP. Let B with h E B be an arbitrary set of 
activities using the single resource. Then B is a minimal delaying alternative 
if and only if R  - rninjEB rj < CiEFiB ri R. For rh = 1, we then havc 
rtl = rninjEB r j  and thus R- 1 < CiEF r, < R, i.e., CiEFiB ri = R. Hcnce, 
there is a minimal delaying alternative b containing h exactly if there is a sct 
A F \ {h) with CiEA ri = R. Now let I be an instance of problcrn SUBSET 
SUM with index set Z, sizes s( i )  E N for i E Z, and threshold M E W (cf. 
Garey and Johnson 1979, problem SP13). Wc obtain an equivalent instance 
of our dccision problcm by choosing F = Z U {h), r, = s( i )  for all i E Z, 
rh = 1, and R =  M. 0 

Similarly it can be shown that it is also NP-complete to  decide whether a 
given activity h is contained in some minimal forbidden set F E F (cf. Stork 
and Uetz 2005, who devise a polynomial trarisforniation from PARTITION). 

In what follows, we describe a rccursion for computing minimal delaying 
alternatives for a forbidden set F (see Neumann ct al. 2003b, Sect. 2.5). Given 
a delaying alternative B, the set B of all minimal delaying altcrnatives B' C B 
for F is either cqual to {B) if B is a minimal delaying alternative for F or 
equal to the set of all minimal delaying alternatives B' C B \ {i) for F with 
i E B. To avoid the multiple generation of one and thc same minimal de- 
laying alternative B' (as subset of two different sets B \ {il) and B \ {i2)),  
we restrict the recursion to subsets B' of B \ {i} for which j > i holds for 
a11 j E (B \ {i)) \ B'. Since F itsclf is a delaying alternative, which includcs 
all minimal delaying alternatives for F, we start the rccursion with B = F. 
Algorithm 1.4 shows the corresponding recursive procedure, where i = 0 if 
B = F at recursion level 0 and i is the number of the activity removcd in the 
prcceding call to  the recursion, othcrwisc. A call to MinimalDelayingAl-  
t e rna t ives (F ,  0) determines the set B of all minimal dclaying altcrnatives for 
forbiddcn set F. 

An alternative approach to  calculating all feasible subsets A c F (and 
thus all delaying alternatives B = F \ A) has been proposed by Brucker et al. 
(1998). Assume that F = {il, i z ,  . . . , i,). Brucker's procedure constructs a 
binary decision tree, where each node at  level p = 1, . . . , u corresporlds to  
some fcasible set A' {il l  i2, .  . . , i@) and branching from a node at  level 
p - 1 corresponds to the decision whether or riot activity i, is contained in 
the rcspcctive child node at  level p. Each leaf of the decision tree belongs to  
one feasible set A. 
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Algorithm 1.4. MinirnalDelayingAltematives(B, i )  

Input: A project, a forbidden set B, an index i .  
Ensure: B contains all minimal delaying alternatives B' C B for F with 

min(B \ B') > i. 

if B satisfies (1.9) then (* B is delaying alternative*) 
if B satisfies (1.10) then (* B is rrlirlinlal delaying alternative *) 
23 := B u {B); 

else 
for all j E B with j > i do MinimalDelayingAlternatives(B \ { j ) ,  j ) ;  

The following proposition establishes thc rclationship between minimal 
dclaying alternatives and minirnal forbidden sets. 

Proposition 1.16 (Schwindt 1998~) .  A minimal delal~in~g alternative B 
for a forbidden set F is an C-minimal set containing an activity j of each 
minimal forbidden set F' F. 

Proof. Wc assume that there is a minimal delaying alternativc B for F and 
a forbidden subset F' F with B n F' = 0. Then set F \ B > F' is feasible. 
Since every superset of a forbiddcn sct is forbiddcn, this contradicts the fact 
that F' is forbiddcn. 0 

1.2.3 Breaking up Forbidden Sets 

When schcduling tllc activities of a project, resource conflicts causcd by the 
simultaneous execution of the activities of some forbidden set have to  be re- 
solved. Thc following theorern by Bartusch et al. (1988) shows how resource 
conflicts can be settled by introducing precedence constraints between activ- 
ities of minimal forbiddcn sets. 

Theorem 1.17 (Bartusch et al. 1988). A schedule S is resource-feasible 
if and only if for each rnininml forbidden set F E 3, there are two activities 
i, j E F such that Sj > S, + p i .  

Proof. Suficiency: We consider the active set A(S, t)  for a resource-infeasible 
schedule S at some time t > 0 such that A(S, t )  is forbidden. Since A(S, t )  
is forbiddcn, there is a subset F of A(S, t)  that is minimally forbidden. By 
definition of A(S, t ) ,  all activities of F overlap at time t ,  which implies that 
there are no two activities i ,  j E F with S, 2 S, + p,. 

Necessity: Assume that there is some minimal forbidden set F for which no two 
activitics 2 ,  j E F satisfy Sj > Si +pi.  Thcn ISi, Si +pi [ n [Sj, Sj + p j  [ # 8 for 
any two activitics i ,  j E F. The Helly property of intervals (cf. e.g., Golumbic 
2004, Sect. 4.5) then implies that QEF[S,, Si + pi [ # 0, and thus thcre is 
some point in time t at  which all activities i from set F overlap. Since F is a 
forbiddcn set, rk(S,  t )  = CztF r i k  > Rk for some k E R P .  0 
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As a direct consequence of Theorem 1.17 wc obtain thc following Corollary. 

Corollary 1.18 (Bartusch et al. 1988). T h e  set  S of all feasible schedules 
represents the  u n i o n  of finitely m a n y  integral polytopes. 

We say that a constraint C breaks u p  minimal forbidden sct F if for cach 
schedulc satisfying C, there are two activities i ,  j E F such that S j  > Si + p i .  
Minimal forbidden sets can be broken up in diffcrent ways. According to 
Theorem 1.17, the first possibility consists in choosing two activitics i ,  j E F 
and introducing an (ordinary) precedence constraint 

bctwccn i and j .  Altcrnativcly one may dcfinc a disjunctive precedence con- 
straint 

Sj > niin (S, + p,) 
r € F : ~ # j  

(1.12) 

between set F \ { j )  and activity j saying that j must riot be started bc- 
fore the earliest completion of some other activity i from set F .  Disjunctive 
precedence constraint (1.12) is equivalent to the disjunction of the precedence 
constraints (1.11) for all i E F, i # j and represents a so-callcd linear reverse- 
convex coristraint (see, e.g., Tuy 1995, Sect. 7). Whereas the number of altcr- 
natives for breaking up F by precedence constraints is C3(IFI2), this number 
is of linear order O(IF1) when using disjunctive precedence constraints. Thc 
set of all schedules satisfying a disjunctive prcccdcnce constraint is generally 
disconnectcd and thus in particular nonconvcx. As will bc shown in Subsec- 
tion 3.1.2, the mininiization of regular (i.e., cornponcntwise nondecreasing) 
objcctivc functions can nevertlleless be done with a timc complcxity that is 
linear in the maximum projcct duration d. In literature, disjunctive prece- 
dence constraints are also referred to as AND/OR precedence constraints or 
waiting conditions (cf. Mijhring ct al. 2004). They have been introduced by 
Igelmund and Radcrmachcr (1983) in thc form of preselective strategies for 
resource-constrained projcct schcduling with stochastic activity durations. 

An arbitrary forbidden set F is said to be brokcn up if all minimal for- 
bidden subsets of F are broken up. Let B be some minimal delaying alterna- 
tivc for F .  From Proposition 1.16 it thcri follows that brcaking up F can be 
achieved by imposing a set of precedence constraints 

s, 2 5'2 +Pz ( j  E B) 
between some activity i from thc maximal fcasiblc sct A = F \ B and all 
activities j E B or by a disjunctive prccedencc constraint 

between set A and sct B. Notc that in the case of precedence constraints, onc 
and the same activity i E F \ B can be chosen for all j E B because any 
conjunction of precedencc constraints (1.11) for the activities j from delaying 
alternative B implies shifting all j E B behind the earlicst finishing activity 
i E F \ B, which breaks up forbidden set F. 
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1.2.4 Consistency Tests 

Thc NP-hardness of finding feasible schcdulcs implies that resource allocation 
can only be performed by enumerating alternative sets of preccdcncc relation- 
ships among activities using corrinion resourccs. Consistency tests designate 
algorithms for detecting constraints that must bc satisfied by any feasible 
schedule and that can be evaluated without enumeration to rulc out in ad- 
vance certain inadmissible alternatives from further consideration. A consis- 
tency test is described through a condition and a constraint that can be cs- 
tablished whenever the condition is satisfied. From a geometric point of view, 
applying consistency tests provides a convex set containing all feasible schcd- 
ulcs. In thc best case, this convcx sct coincides with the convex hull conv(S) of 
the feasible region. From Theorem 1.12, however, it immediately follows that 
conv(S) cannot be computed in polyrioniial timc (othcrwise, problem (1.8) 
with linear objective function f could be efficiently solved by finding some 
optimal vertex of conv(S)). Since S is the union of finitely many integral 
polytopes, the convex hull conv(S) is integral as well. 

In enumcration procedurcs, consistcncy tcsts are often applied dynamically 
to the search space of any enumeration node. The tests then refer to scarch 
spaces rather than to the feasible region. In scheduling literature, consistency 
tests are also known under the names preprocessing (if they are applied to the 
root node before starting the enumeration), immediate selection algorithms, 
edge finding rules, constraint propagation techniques, or satisfiability tests. 
Instead of directly checking given conditions, consistency tests may also try 
to refute additional, hypothetical constraints. If the test rejects the liypoth- 
csis, the alternative hypothesis has bccn shown to be true and thus can be 
used to rcducc thc scarch space. Consistcncy tests have been applied with 
great success in machine scheduling and for thc resource-constrained project 
duration problem (see Brucker et al. 1998, Dorndorf ct al. 2000a, or Dorndorf 
et al. 2000~).  The algorithm of Carlier and Pinson (1989) that solved the fa- 
mous Fisher and Thompson (1963) job shop scheduling problem with 10 jobs 
and 10 machines for the first time has becorrie a classical refercncc in the field. 

We review some consistcncy tcsts that havc been proposed in literature 
for project scheduling with renewable resources (see, e.g., Dorndorf et al. 
1999). All procedures to bc discussed provide additional temporal constraints 
that can be added in the form of arcs to project nctwork N. Let d i j  again 
denote the length of a longest directed path from node i to node j in project 
nctwork N, where we assume that ST # 0. Consistency tests are usually used 
in an iterative fashion as long as new temporal constraints can bc identified 
and thus distance matrix D is modified (scc Algorithm 1.5, whcre r denotes 
the set of consistency tests to be applied). The reason for this is that due to 
updating distance matrix D, certain tests that in previous iterations failed 
may possibly deduce additional constraints. In general, the distance matrix 
yielded depends on the sequence in which the different tcsts are applied. For 
the consistency tests to be discussed below, however, it can be shown that 
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the resulting matrix is unique (cf. Dorndorf et al. 2000b). More precisely, 
any consistency test can be interpreted as a function y mapping distance 
matrices D to updatcd distancc matrices y(D). If for all consistency tests 
y E r, D < D' implies y(D) < y(D1), then thcrc exists only one fixed-point 
rnatrix D with D = y(D).  

Algorithm 1.5. Search mace reduction bv consistencv tests r E r 
Input: A project, a set r of consistency tests. 
Output: Updated distance matrix D. 

compute distance niatrix D; (* Algoritllrn 1.2 *) 
repeat 

for all corisistericy tests y E r do 

apply 7;  
if new temporal constraint S, - S, > 6,, has been established then 

update distance matrix D ,  i.e., set D := y(D);  (* Algorithm 1.3 *) 
until distance matrix D has not been changed during last iteration; 
return distance matrix D ;  

Disjunctive activities tests try to establish precedence constraints be- 
tween activities which cannot be processcd at the same time. Let i ,  j E V" 
be two diffcrent real activities that, with respect to the temporal constraints, 
can be executed in parallel and for which j cannot be completed before i is 
started, i.e., 

-pj < d,, < PL and dp  < p,, 

We say that i and j are in disjunction if due to the resource constraints they 
cannot be processcd at the same time. In that case, we can introducc a new 
prcccdcnce constraint S j  > S, + p, between i and j that will be satisfied by 
any feasible schedule S.  

Obviously, the activities of two-element forbidden sets are in disjunction. 
However, i and j may also bc in disjunction if rik: + rj,+ < Rk for all k E RP. 
Brucker et al. (1998) have used the concept of symmetric triples for finding 
such activities. We call (h, i ,  j) a symmetric triple if {h, i ,  j )  is a forbidden set 
and activity h must bc executed simultaneously with activity i (i.e., dhi > -pi 
and dih > -ph) and with activity j (i.e., dh j  > -pj and djr, > -plL). For a 
syrrimetric triple (h, i ,  j ) ,  activities i  and j cannot be in progress at the same 
time bccausc this would imply that h, i ,  and j wcrc carried out in parallel, 
which is impossible because {h, i ,  j) is a forbidden set. Obviously, detecting all 
syrnnletric triples takes O ( n 7  time. After having established a ncw precedence 
constraint, distance niatrix D must be updatcd, which can be done in U(n2) 
time by using Algorithm 1.3. 

Many consistency tests are based on lower bounds on the work that must 
be performed in certain timc intervals [a, b[ with 0 < a < b < 2. Those tests 
are referred to as energetic reasoning ("raisonnement 6nergi.tiquen, see Lopez 
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et al. 1992) or interval capacity tests (Dorndorf et al. 1999). If b - a = 1, we 
6 

speak of unit-internal capacity tests. Given some schcdule S, Jark(S, t)dt is the 
workload to be processed by resourcc k E R P  in timc interval [a, b[. Rk(b - a )  
is termed the interval capacity of resource k in interval [a, b[. The execution 
timc of activity i in interval [a, b[ equals (min(b - a ,  pi, Ci - a, b - Si))+, where 
(z)+ := max(0,z). It follows that the workload of resource k in interval [a, b[ 
can be written as CiEvcL rik(min(b - a,pi ,  Ci - a ,  b - Si))+.  Now let 

denote the minimum time activity i has to be processed in interval [a, b[. For 
any time-feasible schedulc S E ST, 

then represents a lower bound on the workload of resource k E RP in [a, b[. 
Dorndorf et al. (2000~) have used energetic reasoning for finding further 

activities i ,  j being in disjunction. i and j are in disjunction if for all times t 
at which thc temporal constraints allow both activitics to be in progress, 
the combined resource requirements of i and j for some resource k E R P  

excecd the maximum residual capacity of k at timc t .  This condition can 
be formulated as follows. Activities i and j may be executed in parallel at 
time t if t l  < t < t2 where t l  = max[max(ESi, ES,), min(ECi, ECj)  - 11 
and t2 = rnin[min(LCi, LC?), max(LSi, LSj) + 11. The minimum workload in 
interval [t, t + 1[ (or, equivalently, thc minimum requirement at time t) that 
is due to the exccution of activities from set V" \ {i, j )  equals wk(t, t + I )  - 
ri,!&(tl t + 1) - rjkpj(t, t + 1). Accordingly, activitics i and j cannot overlap 
in time if there exists a resource k E RP such that for all t E [tl ,  t2[ 

For given resource k E R P ,  the core loadzng profile ri : R -+ Z>o whcrc 
r i ( t )  = wk(t, t + 1) represents a lower approximation to the loading profiles 
rk(S, .) of a11 time-feasible schedules S E ST. By using a support-point rep- 
resentation of step function ri,  all disjunctive activities i ,  j E V a  satisfying 
(1.15) can be identified in U(IRPln2) time (cf. Dorndorf et al. 2000~).  Each 
timc a new precedence constraint has been cstablishcd, we have to recalculate 
the earliest and latest start times of activities and to update the core loading 
profiles of rencwable rcsources, which, for given distance matrix D, requires 
O(IRPln1ogn) timc. Recall that after the addition of an arc (i, j )  to project 
nctwork N, the earliest and latest start times can be updated in lincar time 
(see Remark 1.8). 

The shaving technique is intended to tighten the time windows [ES,, LS,] 
of activities i E V a  by falsifying hypothctical earliest or latest start times. We 
first considcr the case of a hypothetical earlicst start timc t,. Assume that after 
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the addition of the respective arc (0, i )  with weight ti to project network N 
it holds that 

~ k ( t ,  t + 1) > Rk (1.16) 

for some resource k E RP and some time t. Then the capacity of rcsource k is 
not sufficient to match the requircments for resource k a t  time t,  i.e., we havc 
shown that any fcasiblc schcdule S satisfics Si < ti - 1 (recall that conv(S) 
is integral). For cach activity i ,  thc values for ti can be tcsted according to 
a binary search in sct [ESi, LSi] n Z, wherc ti is dccreascd if the test fails in 
refuting the hypothesis, and increased, otherwise. Testing hypothetical latest 
start times can be performed analogously. When we apply the test to a givcn 
activity i E Va, we have to update the core loading profiles ri a t  each itera- 
tion of the binary scarch, which again takcs U(IRf In log n)  tirne. Obviously, 
inequality (1.16) needs only to be evaluated at jump-up discontinuities of the 
core loading profiles, i.e., at  points t = LSj (j E V). Thus, the time cornplex- 
ity of applying shaving to activity i is U(1og dlRf In log n). Since updating the 
core loading profiles is includcd in thc shaving proccdurc, establishing a new 
earlicst or latest start time does not incur any additional effort. 

The following unit-interval capacity test determines points in time at 
which certain activities cannot be executed. Consider some real activity i E V a  
that, at  a given time t,  is not necessarily in progress (i.e., ESi < t - pi or 
LSi > t + 1). In this case, activity i cannot be carried out at time t if for some 
resourcc k E RP 

'UJk(t, t f 1) + T,k > R k  

which implies S, E [ES,, t -pi] U [t + 1, LSi] for any feasible schedule S (note 
that due to pi@, t + I )  = 0, rcquiremcnt r i k  does not cntcr into workload 
wk(t, t + I ) ) .  Two particular cases allow the introduction of additional ternpo- 
ral constraints. If t is less than the carliest complction time ECi of activity i ,  
we obtain S, > t + 1, and if t is greater than or equal to the latest start time 
LSi of i, it follows that Si 5 t - pi. Again, it suffices to consider points in 
time t coinciding with the latest start time LSj of some j E Va. Accordingly, 
applying the unit-interval capacity test to activity i requires O(IRPln) time. 
The update of core loading profiles after having established a new earliest or 
latest start tirne can again be performed in Q(IRPIn1ogn) time. 

Thc activity-interval capacity test generalizes several consistency tests 
that havc been devised for machine scheduling (see Dorndorf et al. 1999). Let 
U C Va bc a rlonempty sct of rcal activities and let U', U" c U be two subscts 
of U. If for some resource k E RP, the interval capacity in the interval frorn 
the earliest start of an activity from set U \ U' to the latcst complction of an 
activity from set U \ U" is lcss than the workload of the activities frorn set U, 
1.e., 

then there is somc activity from set U' that is startcd first or somc activity 
from set U" that is conlpleted last among the activities frorn set U: 
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min Sg < min S,, or max Ch > max C, 
/LEUf' 

(1.18) 
gEU' h€U\U1 g€U\U1' 

For certain choices of scts U' and U", the disjunction (1.18) results in temporal 
constraints (cf. Table 1.1). The corresponding consistency tests are known as 
input, output, input negation, and output negation tests. Thc computational 
effort associated with the diffcrcnt activity-intcrval consistency tests will arise 
from the analysis of the next consistency test. 

Table 1.1. Specific implementations of the activity-interval capacity test 

Test (U1 , U1') Temporal constraint(s) 
Input ({il, 0) S , - s , >  l f o r a l l j E U , j # i  
Output ('4 {j)) S, - Si > p, - p, + 1 for all i E U ,  i # j 
Input negation (U \ {j}, { j } )  S j  > min( min ES,, max EC, - p,) + 1 

a \ t ~ }  ~ u \ t j }  
Output negation ({i), U \ {i)) Si 5 max( mi11 LS,, , max LC, - p i )  - 1 

j€u\tz) ~ € u \ l i )  

Thc general interval capacity test refers to time intervals [a, b[ for 
which the residual interval capacity Rk(b - a)  - wk(a, b) for given resource 
k E R P  is minimum. In Schwindt (1998c), Sect. 3.3, and, independcntly, in 
Baptiste ct al. (1999) it has been shown that intervals [a, b[ with minimum 
residual interval capacity can be determined by investigating U(n2) critical 
intervals (where interestingly it is not sufficient to consider only intervals 
whose endpoints coincide with carliest or latest start or completion times). 
Similarly to the shaving technique, we may establish a hypothesis on the 
consistency of somc tcmporal constraint St-SJ > t,,. If under this assumption 
there is a resource k with 

rnax - wk(a, b) > Rk(b - a)  
O<a<b<d 

the hypothesis has bcen refuted and thus we can introduce the reverse tempo- 
ral constraint S, - S, > -t,, + 1. For each pair (i, j )  E Va x Va wherc i # j ,  
a binary search in sct [d,, , -d,,] n Z provides, within U(log d )  iterations, the 
minimum t,, for which S, - S, > t,, can be disproved. Since for given re- 
source k ,  an intcrval [a, b[ with rnininium residual interval capacity can be 
found in U(n2 logn) time (cf. Schwindt 1998c, Sect. 3.3), the time required 
for applying the general interval capacity tcst to a given pair ( i , ~ )  is of order 
~ ( l o g 2 l R " n ~  log n).  

The general intcrval capacity test represents a gencralization of all activity- 
interval consistency tests listed in Table 1.1. This can be seen as follows. Con- 
sidcr, for given sets U, U', U", the time intcrval [a, b[ wherc a := ming,u\u, ES, 
and b := maxhEu\u,, LCh. Then the right-hand side of inequality (1.17) co- 
incides with the interval capacity Rk(b - a)  of interval [a, b[. We first show 
that the general interval capacity test generalizes the input test. Let U C Va 
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bc a sct containing two differcnt activities i ,  j .  According to Table 1.1, wc 
choose U 1  = {i) and U" = 0, i.e., a = mingEu\Iil ES, and b = maxh,u LCh. 
Now assume that Si - Sj 2 0. Then min,Eo\(il ES, = mingEu ES, and 
thus [ES!,, LCh[C: [a, b[ for all h E U ,  which implies ChEU rhkph < wk(a, b). 
This means that any temporal constraint that can be deduced by using the 
input tcst also arises from applying the general interval capacity test where 
for each pair (i, j ) ,  time lag tji is chosen to be cqual to 0. We now turn to 
the input negation test with U' = U \ {j) and U" = {j), i.e., a = ESj 
and b = maxl,,u\{jl LCh. We apply the general interval capacity test with 
hypothesis So - Sj 2 - niin(rnin,,u\{jl ES,, rriaxlL,u\ljj EC!, - l-'j). From 
Sj < ~ n i n , ~ ~ \ { ~ ~  ES, it follows that ES, 2 ESj = a for all y E U \ {j), 
and Sj +p j  < maxh,u\{?) ECl, irriplics LC:j < max,A,u\(j) LCh = h. We thcn 
again have [ES!,, LCh[C [a, 6[ for all h E U .  For reasons of symmctry, the 
output and output negation tests can bc dealt with analogously. 

The energy precedence test has been devised by Laborie (2003). If therc 
is an (implied) minimum time lag dij > pi between the starts of activities i 
and j, thcn a workload of rikpi units has to be processcd on each resource 
k E RQetween Si and Sj, whicli takes at least rnaxk,R~ rikpi/Rk units of 
timc. Thus, for each feasible schedule S we have 

Note that in contrast to the prcccding interval capacity tests, tlie effective- 
ness of the energy prccedencc test is independent of the tightness of time win- 
dows [ES,, LS,]. Applying the energy precedence tcst to activity j requires 
O(1RPln) time. If the energy precedence test is applied to all activities, the 
amortized computational effort per activity can be decreased to O(IRpl+ n). 

1.3 Cumulative-Resource Constraints 

Cumulative rcsourccs rcprescnt a gencralization of nonrenewable resources like 
moncy or raw materials, which have been studied in the context of project 
scheduling problems where activities can be performed in one out of several 
alternative execution niodes differing with respect to duration and resource 
requirements (cf. e.g., Wgglarz 1980 or Slowiriski 1981). Unlike renewable re- 
sources, which are used during the cxccution time of activities and releascd 
after completion, nonrenewable resources are consumed. Since the availability 
of nonrenewable rcsourccs is nonincreasing over timc, tlie feasibility of a re- 
source allocation and the respective cost incurred is independent of the sched- 
ule S established and solcly depends on thc assignment of cxecution modes 
to activities. Thus, nonrenewable resources can be disregarded if each activ- 
ity can only be performed in one mode. How to solve the mode assignnient 
problem in case of multiple execution modes will be discussed in Section 5.3. 
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In practice, resources that arc consumcd are generally renewed later on. If 
the replenishment occurs during the project cxccution, thc availability of the 
rcsourcc increases at certain points in time. In that case, the feasibility of a 
schedule generally depends on thc scqucncc of dcplctions and replenishments. 
For examplc, in many real-life projects certain project activitics arc associated 
with disbursements for materials or staff leasing, and progress payments arise 
for completed subprojects. It may then be necessary to delay certain disbursc- 
mcnts behind payments in order to avoid a negative cash balance. Resources 
that are depleted and replcnished over timc arc called cumulatzve resources. 
The concept of cumulative resources has bcen introduced by Schwindt (1998~). 
A cumulative resource can bc regarded as the inventory level in some storage 
facility of finite capacity. The invcntory level is bounded from below by somc 
safety stock and boundcd from abovc by thc capacity of the storage facility. 

Carlier and Rinnooy Kan (1982) and Carlier (1989) havc dcalt with the 
special case where activitics consume nonrenewable resources that become 
available at givcn points in time. Thc authors provide a polynomial-time al- 
gorithm for minimizing regular and max-separable objective functions f .  In 
addition they show that in prcsence of replenishing activities the optimization 
problem becomes NP-hard. 

Shewchuk and Chang (1995) havc considercd scheduling problems with 
recyclable resources, i.e., renewable resources whose availability expircs after a 
given lifcspan and which may be reused after a certain repair time (likc cutters 
that have to be re-ground from time to timc). Such a recyclable resource can be 
vicwcd as the combination of a classical renewable resourcc and a cumulative 
resource kceping thc rcsidual time bcfore recycling becomes necessary. 

Of course, cumulative resources can also be used to formulate part avail- 
ability constraints arising, c.g., in construction projects or assembly manufac- 
turing (sec, c g ,  Kolisch 2000, who has deviscd a mixed-irtegcr lincar program 
for scheduling in assembly environments). If certain intermediate products 
represent common parts, which arc components of differcnt subassemblies or 
final products, onc has to decide on the sequence in which completed items of 
those common parts are allotted to the respective products into which they 
are installed (assignment-sequence problem, cf. Neurnann and Schwindt 1997). 
The conccpt of cumulativc rcsourccs pcrmits to intcgrate the assignment- 
sequence problem into the resource allocation problem (see Section 6.1). A 
further application of cumulativc rcsourccs in thc context of assembly man- 
agement is the modelling of spatial capacity constraints, which are due to 
the limitcd asscmbly area. Kolisch and Hefi (2000) have dcvcloped schcdulc- 
improvement methods for asscmbly scheduling problems including the latter 
type of constraints (sce also Kolisch 2001b, Ch. 10). 

Thc case of general cumulative resources has bcen considered by Neumann 
and Schwindt (2002), who have discussed structural issues and have proposed 
a branch-and-bound algorithm for project scheduling subject to inventory 
constraints. Constraint-based methods for solving scheduling problems with 
cumulative resources have been dcveloped by Beck (2002) and Laborie (2003). 
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For what follows, we assume that cumulativc resources are depleted and 
replenished discontinuously at the occurrence of certain evcnts likc the starts 
and completions of real activities. Accordingly, we associate the resource re- 
quirements with events instead of real activities, and we represent the project 
undcr study by an event-on-node network (see Subsection 1.1.2). Thc case 
whcrc curnulative resources are replenished and depleted continuously over 
the processing timc of activities is treated in Section 5.4. 

1.3.1 Resource-Feasible Schedules 

Let R Y  be the set of cumulative resources. For cach resource k E R Y  a mini- 
nluni inventory level or safety stock & E ZU (-03) and a maximum inventory 
level or storage capacity Rk E Z U {m) is givcn, where Rk > &. Thc (stor- 
age) requirement r i k  E Z of cvcnt i  E Ve for resourcc k equals thc incrcase 
in the inventory level of resource k at the occurrence of i .  rik: is positive if i  
replcnishes k and negative if i depletes k. For example, a replenishing event 
may reprcscnt thc completion of some real activity producing an internlediatc 
product that is stocked in resource k, whereas a depleting event may coin- 
cide with the start of some rcal activity consuming the intcrmediate product. 
Another cxarnplc of replenishing and depleting events are progress paymcnts 
reccived arid disbursements for materials arid subcontractors. Resource re- 
quirement r 0 k  can be regarded as the initial inventory level in resource k. Wc 
assume that 

which ensurcs that the inventories CiEve ~ i k  of resources k E R Y  at the 
project termination neither fall below the safety stocks nor exceed thc 
storage capacities &. 

Now let VZ- := { i  E Ve 1 r i k  < 0) and V;+ := { i  E V" I r i k  > 0) denote 
the sets of events depleting and replenishing, respectively, resource k E R Y .  

Givcrl a schcdulc S, 
A(S, t)  := { i  E Ve I Si < t )  

is the active set of events that have taken place by time t and thus determine 
the irlventory level in resourcc k E R Y  at time t .  By 

we denote the invcntory level of resource k E  R Y  at time t given schedule S .  
rk(S, t )  corresponds to the cliniulative resource demands for resource k in 
time interval [0, t ] .  The right-continuous step function rk(S, .) is again called 
the loading profile of resource k .  Thc cumulative-resource constraints can be 
written as - 

R , < r k ( S , t ) < R k  ( k e R Y ,  O < t < Z )  (1.20) 
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Definition 1.19 (Resource-feasible and feasible schedules). A sched- 
ule S satisfying the cumulative-resource constraints (1.20) is called resource- 
feasible with respect to cumulative resources k E RY. The set of all resource- 
feasible schedules is denoted by Sc. S := ST n SC is the set of all feasible 
schedules. 

Notice that conditions (1.19) are ncccssary and sufficient for the existence 
of a resource-feasible schedule. Under conditions (1.19), a resource-feasible 
schedule is obtaincd by scheduling all events at time 0. 

The basic resource-constrarned project scheduling problem with cumulative 
resources can be stated as follows: 

subject to S E ST n Sc 
(1.21) 

Definition 1.20 (Optimal schedule). A feasible schedule S solving the 
resource-constrained project scheduling problem (1.21) is called optimal. 

Remarks 1.21. 

(a) Without loss of generality we may assume that Ek = m for all k E RY 
because the storage capacity of resource k can be taken into account by - - 
introducing a fictitious resource k' with &, = -Rk,  R k ,  = m ,  and rik, = 

-rik for all i E Ve. Since SR remains unchanged when adding some integer 
r. E Z to r o k ,  &, and &, we may in addition assume that Rk = 0 for 
all k E RY. 

(b) The resource-constrained project scheduling problem (1.8) with rcncwable 
resources is a special case of problem (1.21). To formulate the renewable- 
resource constraints in terms of temporal and cumulative-resource con- 
straints, we replace each real activity i by two events activities is and ic 
with dz',"f,'" dz,ac" = pi. For each renewable resource k E RP, we intro- 
duce a cumulative resource k' with safety stock & = 0, storage capacity 
- 
Rk, = m, as well as requirements r ~ k ,  = Rk,  rTL+l,kf = 0 and r i p  = - rik, 
'r,ck/ = r ,k for all real activities i E V a .  

In analogy to Section 1.2, the problem without tcmporal constraints is 
tcrrned temporal relaxatzon. The resource relaxatzon again coincides with time- 
constrained project scheduling problem (1.2). 

The NP-hardness of finding some feasible schcdulc follows from thc fact 
that first, the rcspective problem for the case of renewable resources is NP- 
hard (cf. Theorem 1.12) and that second, renewable-resource constraints can 
bc cxprcssed by temporal and cumulative-resource constraints without chang- 
ing the order of magnitude of the problem size. The following theorem shows 
that, unlike the case of renewable resources, the problem remains NP-hard 
even if all maximum time lags are deleted. 
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Theorem 1.22 (Neumann and Schwindt 2002). The following decision 
problem is NP-complete. 

Instance: A project with one cumulative resource of infinite storage 
capucity, with 6, > 0 for all (i, j )  E E, (i, j )  # (n+1,0) ,  and with 
an arbitrarily large project deadline 2. 

Question: Does them exist a feasible schedule? 

Proof. Clearly, the resource-feasibility of a schedule S can be verified in poly- 
nomial time by evaluating the resource constraints for all k E R Y  and all 
occurrence times t = Si of events i E Ve. Hence, the decision problem is 
contained in NP.  

Consider an instance of the NP-complete decision problem 3-PARTITION 
(cf. Garey and Johnson 1979, problcm SP15). Given a set Z of 3u indices 
i = 1 , .  . . ,3u with sizes s ( i )  E N and given a bound M E N such that M / 4  < 
s ( i )  < M / 2  for all i E Z and C i t z s ( i )  = u M .  The question is whether 
or riot Z can be partitioned into u sets TI , .  . . ,I, such that s ( i )  = 
M for all p = 1, .  . . , u. An equivalent instance of our decision problem can 
bc constructed as follows. Besides the project beginning 0 and the project 
termination n + 1, set Ve contains TZ = 4v events i = 1 , .  . . ,4u. There is one 
cumulative resource with safety stock R = 0 and infinite storage capacity 
- 
R = m. The requirements for the cumulative resource are 7.0 = r,+l = 0, 
ri = s ( i )  for i = 1 , .  . . ,3u, and ri = -M for i = 3u + 1, . . . ,4u. In addition, 
we define u - 1 minimum time lags d$T1 = 1 for i = 3u + 1 , .  . .4u - 1, 
which prevent the simultaneous occurrence of any two depleting events. Due 
to R = 0, each unit consumed must irnrnediately be replenished, which can be 
achieved precisely if the replenishing events can be assigned to the depleting 
events such that at each depletion time t ,  the total replenishment by those 
events i = 1 , .  . . ,3u with Si = t equals M. 0 

1.3.2 Forbidden Sets and Delaying Alternatives 

In the case of cumulative resources, we have to consider depletions and re- 
plenishments of resources. Moreover, in addition to upper bounds &, there 
arc lower bounds Rk on the inventories ( k  E 727). This results in two differ- 
ent types of forbidden sets: so-called surplus sets if the storage capacity is 
exceeded and shortage sets if the inventory falls below the safety stock. 

Definition 1.23 (Surplus and shortage sets). For a resource k E R Y ,  a 
set of events F C Ve is called a k-surplus set if 

F is termed a minimal k-surplus set if F is a k-surplus set and there is no 
k-surplus set F' c F with F \ F' C V;+ and no k-surplus set F" > F with 
F'' \ F C Vt- . Likewise, a set of events F C V" is called a k-shortage set if 
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F is termed a minimal k-shortage set if F is a k-shortage set and there is no 
- 

k-shortage set F' c F with F \ F' C. Vz and no k-shortage set F1' > F with 
F" \ F & v,'. By  Fl and Fi we denote the sets of all minimal k-surplus 
and all minimal it-shortage sets, respectively. 

Note that one and the same set F can be a surplus set with respect to 
a resourcc k E R? and a shortagc sct with respect to a different resource 
k' E 727. In thc following, we refer to sets F being k-surplus or k-shortage 
sets for some rcsource k E RY as forbzdden sets. A mznzmal forbzdden set is a 
minimal k-surplus or a minimal k-shortage set for some resourcc k E 727. 

Remark 1.24. We assume that Bk. < 0 and R k  > 0 for all k E 727, which 
ensures that F = 0 is not a forbiddcn set. It follows from Remark 1.21a that 
this convention docs not mcan any loss of generality. 

Similarly to the case of renewable resources, the concept of minimal de- 
laying alternatives can bc used for breaking up several minimal forbidden sets 
at once. 

Definition 1.25 (Delaying alternative). Let F be a k-surplus set (a k -  
shortage set). B c F is called a delaying alternative for F and k if F \ B is 
not a k-surplus set (not a k-shortage set). If additionally B is C-minimal i n  
the set of all delaying alternatives for F and k ,  we speak of a minimal delaying 
alternative for F and k .  

The following two conditions (1.22) and (1.23) are necessary and sufficient 
for a sct B C Ve to be a minimal delaying alternative for F and k .  

From (1.23) it immediately follows that minimal delaying alternatives for sur- 
plus sets only contain replenishing cvents and that conversely, minimal delay- 
ing alternatives for shortage sets only contain depleting events. 

To prove the basic theorem that will show how to resolve resource conflicts 
in a systcmatic way, we need the following preliminary lemma. 

Lemma 1.26 (Neumann and Schwindt 2002). 

( a )  For each k-surplus set F ,  there exists some set F' 3: satisfying the 
conditions 0 # F' n V;+ 2 F n v;+ and F' n V," 2 F n V,"-. 

(b)  For each k-shortage set F ,  there exists some set F' E 3; satisfying the 
conditions 0 # F' " V,- C F n V,,- and F' n v{+ > F n VE'. 
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Proof. Let F be a k-surplus set. We construct a rniriinial k-surplus set F' 
satisfying the condition of (a) as follows. We set F' := F and scan the events 
j E F' n v,"' . Event j  is removed from set F' if F' \ { j )  is still a k-surplus set. 
Remark 1.24 implies that the resulting set F' contains a rcplenishing event. 

- 
Then, we scan the events j E V c  \ F and add j to set F' if F' U { j )  is 
still a k-surplus set. Consequently, for all events j E F' replenishing rcsource 
k,  F' \ { j )  is no longer a k-surplus set and for all events j $ F' depleting 
rcsource k, F' U { j )  is not a k-surplus set, either. Thus, F' represents a 
minimal k-surplus set meeting the condition of (a). The reasoning for a k 
shortage sct F is analogous. 0 

Proposition 1.27 (Neumann and Schwindt 2002). Let F be a k-surplus 
set (resp. k-shortage set). Set B ,represents a minimal delaying alternative for 
F and k if and o d y  if B is an 2-minimal set contuiwing one event j E v;+ of 
each minimal k-surplus set F' E 3; with F' f' V:' C: F n v,"' and F' n VE- > 
F n V , -  (resp. one event j E V z -  of each minimal k-shortage set F' E FF 
with F' n V ,  c F n V,"- and F' n v;+ > F n v;' ). 

Proof. Let F be a k-surplus set for some k E R? 

Suficiency: Wc consider a set B satisfying 

Now assume that C j E F \ B  rjk > Rk. Then F \ B is a k-surplus set, and Lem- 

ma 1.26 implics the existence of a set F' E .F+ with F' n v;' C ( F  \ B )  n VL+ 
and F' n V;- > ( F  \ B )  n V , F  R o m  F' n VEB C ( F  \ B) n v;' it then follows 
that F' n v,"' n B = 0, which contradicts the assumption. Consequently, we 
have CjEF\B r j k  5 Rlc for any set B with property (1.24), and thus each 
C-minimal set B meeting condition (1.24) is a minimal delaying alternative. 

Necessity: Now let B be a minimal dclaying alternative. We assume the exis- 
tence of a set F' E 3: with ~ ' n  v{+ c F n v;', F' n V z -  > F n V l - ,  
and F' n v,"' n B = @. Clearly, we have r 3 k  > 0 for all j E B, which 
then implies B n v;' = B ,  i.e., F' n B = 0 and F' = F' \ B. Thus, 

- 

C j E F ,  r j k  = CjEI.',\B r j k  < C j E F \ B  ~ j k  < Rk,  i . ~ . ,  F' is not a k-surplus - 
set, which contradicts the assumption. Moreover, we have CjEF\B,  ~ j k  > Rk 
for all subsets B' c B, which implies that for each B' c B, there is a set 
F' E .F: with F' n v,"' 2 F n v,"' and F' n v;' n B' = 0 (see the proof of 
sufficiency). Thus, B is C-minimal in the set of all sets satisfying (1.24). 

The proofs for the casc of a shortage set F are analogous. 17 

Algorithm 1.6, which is a variant of Algorithm 1.4, shows the correspond- 
ing rccursive procedure used for computing the set B of all minimal delaying 
alternatives for a forbiddcn set F and a resource k. Sincc the projcct begin- 
ning 0 may be contained in minimal delaying alternatives, the procedurc is 
invoked by MinimalDelayingAlternatives(F, k, -1). 
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Input: A project, a forbidden set B ,  a resource k,  an index i .  
Ensure: B contains all minimal delaying alternatives B' B for F and k with 

min(B \ B') > i .  

if B satisfies (1.22) then (* B is delaying alternative *) 
if B satisfies (1.23) then ( c  B is minimal delaying alternative *) 

B := B u {B); 
else 

for  all j E B with j > i d o  MinimalDelayingAlternatives(B \ {j), k,  j ) ;  

1.3.3 Breaking up Forbidden Sets 

Thc following theorem provides a sufficient and necessary condition on the 
resourcc-feasibility of schedules with respect to cumulative resources. 

Theorem 1.28 (Neumann and Schwindt 2002). A schedule S is re- 
source-feasible if and only zf 

(a) for each F E 3; with k E R Y ,  there exist two events j E F n v;+ and 
- 

i E V{ \ F such that Sj > Si, and 
- 

(b) fo r  each F E 3; with k E '727, th,ere exist two events j E F n V{ and 
i E vke+ \ F such that S, 2 Si. 

Proof. Suficiency: Let S be a schcdule with rk(S,  t)  > Rk for somc resource 
k E R Y  and some point in time t > 0. Lemma 1.26 thcn provides the existence 
of a minimal k-surplus set F E 3; for which 0 # F n v$+ 2 A(S, t )  n v;+ 
and F n V t  > A(S, t)  n Vz-. Moreover, (1.19) ensures that Vg- \ F # 0. 
Due to F n v;+ 2 A(S, t)  we have Sj < t for all j E F n v{+. In addition, 
V ;  \ F c Ve \ A(S, t] implics Si > t for all i E V {  \ F. Thus, Sj < Si 
holds for all j E F n V{ and all i E Vg- \ F, which contradicts condition (a). 
Similarly it can be shown that from a shortagc in some resource k at a time 
t > 0 it follows that condition (b) is not met. 

Necesszty: Let F E 3; bc a minimal k-surplus set violating (a), i.c., for all 
J E F~v{+ and all i E Vl- \F, wc havc S3 < Sz. From Rcrnark 1.24 it follows 
that F contains an event replenishing resource k .  Let t := maxJEFnv2+ S, be 
the point in timc at which thc last replenishing event j E F occurs. Due 
to F n v,"+ 2 sl(S, t )  and (Vt- \ F )  n A(S,t)  = 0, we obtain rk (S , t )  2 
CJEF r,k > Rk, i.e., S is not resource-feasible. The case of F E 3; can be 
dealt with analogously. 0 

Theorem 1.28 states that any resource conflzct caused by the occurrence 
of the events of somc forbidden set can be resolved by adding prccedcncc 
constraints S, > S, to the original temporal constraints. As a consequence, 
thc sct Sc of all resource-feasible schedules rcpreserits a union of polyhedral 
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cones, and the sct S of all fcasible schedules again is a finite union of inte- 
gral polytopcs. Since each project scheduling problem with rcnewable-resource 
constraints can bc represented as an cquivalent project scheduling problem 
with cumulative-resource constraints, this union is generally disconncctcd. 

Similarly to thc casc of rencwable resources, forbidden scts F can be broken 
up by introducing (ordinary) precedence constraints or disjunctivc preccdence 
constraints. Let F bc a k-surplus sct for somc rcsource k and let B be some 
minimal delaying alternative for F and k .  Then we may cithcr irnposc a set 
of precedence constraints 

S,>Si ( j E B )  
- 

between some depleting cvcnt i from sct A = V$ \ F and all replenishing 
cvents j from set B or, altcrnatively, a disjunctivc precedence constraint 

min S . > rnin S,i 
j E B  ' - Z E A  . 

between sets A and B. For brcaking up a k-shortage set F, we may introducc 
a sct of prcccdcnce constraints 

between some replenishing event i from set A = V;' \ F and all events j from 
a corresponding minimal delaying alternative B or by a disjunctive precedence 
constraint 

rnin jEo S G . > min Si 
Z E  A 

between sets A arid B.  Since cornpared to projcct schcduling with renewable- 
rcsource constraints, set A typically contains a large nurnbcr of elcmcnts, the 
use of disjunctivc prccedcncc constraints instead of ordinary precedence con- 
straints generally leads to a tremendous decrease in the size of the enumcration 
trcc of branch-and-bound rncthods. 

1.3.4 Consistency Tests 

As for project scheduling problems with renewable-resource constraints, con- 
sistcncy tcsts can be used to draw conclusions about temporal constraints 
that must necessarily be satisfied by resource-feasible schedules. 

Ncumann and Schwindt (2002) have used the profile test for calculating 
lowcr bounds on the minimum project duration. Assume that some event i 
cannot take place before a hypothetical earliest occurrence time t i .  We add 
the corresponding arc (0, i) with wcight ti to projcct nctwork N. Let Sk with 
k E 727 be the (gencrally not time-fcasible) schedulc wherc replcnishmcnts 
arise as carly as possible and depletions occur as late as possiblc, i.e., 

~ , k  = ES,, if r z k  > O 

S: = LS,, otherwisc 
} (i E v e )  
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The corresponding loading profilc rk(Sk, .) then provides an upper approxima- 
tion to the loading profile of any resource-feasible schcdule. If rk(Sk, t )  < & 
for somc time t,  it has thus been shown that event i must arise before time t i ,  
i.e., Si < ti - 1 (notice that conv(S) is again an integral polytope). The con- 
tradiction may also be dcrived from comparing the storage capacity & of 
rcsources k with lower approximations to resourcc-feasible loading profiles 
obtained by scheduling dcplctions at earlicst and rcplcnishmcnts at latest oc- 
currence times. Similarly to thc shaving techniquc for projcct schcduling with 
renewable rcsources, the tentative values for ti can bc tcsted according to a 
binary search in set [ES,, LS,] n Z. Hence, the profile test can be implemented 
to run in U ( l o g ~ l R ~ l n l o g n )  timc per event i. Recalculating the earliest oc- 
currence times aftcr having applied thc test talcs U(n) timc (cf. Rcmark 1.8). 
Instead of earliest occurrence tirnes we can also establish hypotheses on latcst 
occurrencc timcs, which may then be falsified by the same tcchniques. 

The following balance test has been devised by Laborie (2003). Event 
h E Ve must occur before event j E Ve precisely if dhj > 0, and h may occur 
before j exactly if djh < 0. Now lct doj > 0. By considcring all depleting 
cvents that must occur before j and all replenishing cvcnts that may occur 
before j, wc obtain the upper bound 

on the inventory lcvcl in resource k just before the occurrence of j. By rear- 
ranging thc tcrms, ~ ' ( j )  can also be written as 

i.c., as the sum of all requirements that must take place before j and all re- 
plenishments that possibly but not necessarily occur before j .  Now assume 
that ChtVP.dhl>O r iLk  < &, which implies that somc of thc lattcr replenish- 
ments must arise bcforc 2. Lct h l ,  . . . , h, be a nurnbcring of the events from 
set vli(j) := {h E Vz I d,iL < 0, dh, < 0) according to nondecreasing 
earliest occurrence tirnes ESh, and let p be the smallest index such that 

Then j must occur aftcr time ES,,p, and we obtain the temporal constraint 
S, 2 ESh,L + 1. If distance matrix D is givcn, thc timc needed for applying 
thc balance test to activity j is of ordcr U(IRYInlogn). Updating matrix D 
after having increased ESJ takes U ( n 7  timc. 

The balancc test can be strengthrncd as follows. Wc consider one event 
i E v{+(~) and we assume that St > S,. Thcn upper bound 5;;;<(j) on the 
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inventory lcvcl in resource k at  time Sj-1 can be reduced by all replenishments 
from set ~ z + ( j )  which carlnot occur strictly before i (and duc to  Si > Sj thus 
cannot occur strictly before j). This mcans that if 

for some k E 727, then it must hold that S, > S, + 1. This variant of the test 
takcs O(IRYjn) time per pair (i, j) of events. 

Similar consistcricy tests can be performed based on the upper bound 

on the invcntory lcvcl at the occurrence of evcnt j  and the corresponding lowcr 
< .  bounds r- (j) and ~ 1 ;  ( 3 ) .  


