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Models and Basic Concepts

Inn this chapter we introduce three basic projeet scheduling problems: the
time-constrained project scheduling problem, the resonrce-constrained proj-
ect scheduling problem with renewable resources, and the resource-constrained
project scheduling problem with caunnlative resources, The time-constrained
project scheduling problem consists in scliedubug the activities of a project
such that all temporal constraints are satisfied and some ohjective function
ts oplimized. We review how temporal scheduling of the project can be per-
formed by solving specifle thoe-constrained project scheduling problens. We
distinguish between two typoes of resonrees, namely renewable and cnmulative
resources, depending on whether or not resource avallability at a given point
iy thne s affected by the complete past project evolution, For both types
of resonrees we show how fo cope with resource constraints by ostablishing
precedence relationships among e activities from so-called forbidden sets,
whose jol resouree requirentents exceed the resource availubility,

1.1 Termporal Constraints

1.1.1 Tinte-Feasible Schedules

A project can be considercd to be o set of interacting tasks requiring time and
resources for their completion, The structural analysis of the project provides
a deconmposition of the tasks nto a set V' oof activities and a set I of prece-
dence relationships among them, Set V' oconsists of noactivities ¢ = 1,.. ., n
to be scheduled and two auxiliary activities 0 and n + 1, representing the
project beginning and the project tenmination, respectively. The precedence
relationships can be represented as activity pairs {4, 7) where ¢ &£ 4, saying
that the start thne of activity ¢ affects the carliest start time of activity §.
Thus, F C V x V i some brreflexive relation W set V. Note that this relation
may nob be asymmetric if there sre two aetivities 4,7 € V which matually
infipence their earliest start times, The thee esdirnation associatos @ duration
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i € Lpg with each activity and a time lag 6, € Z with ecach palr {4,5) € E.
An activity 4 & V s reforred to ag fletilions activity or event i p; = 0. Oth-
erwise, we speak of a reel actwity. The project beginning and termination,
the receipt of mnaterials, or milcstones are examples of events. V® and V©
respectively denote the sets of real activities and events of the project. We
assnme that the real activities st not be intervypted ouce they have been
beguy, Let 8 denote the start thme of aetivity ¢, which has 1o be determined
when scheduling the project in the ternporal scheduling and resonree alloca-
tion steps, I ¢ is a flctitious activity, S, I3 also termed the occurrence time of
event 4. The thime lags &, give 1ise to the femporal constrainis

S5 =S 28y (L)€ E) (1.1

i, 7) € B, activity § cannot be started earlier than &;; units of time after the
start of activily ¢. A nonnegative value of §;; corresponds to a mindmum fime
lay (.:;f";”' m 4y > O between activities ¢ and §, whoreas a negative valie of 6;;
car1 be viewed as a mazimum time lag dJ*° = -4;; > 0 between activities j
and . If d;;f*'“' = g, nequality {1.1} s referred to as a precedence constraind
between activities i and 7. For what follows, we establish the following con-
vention,

Remark 1.1, The project is started at time 0 and mist be completed by a
proseribed deadline 4, Le., 5y =0 and 5,1 < 4. The deadline is represented
as a maximgn tine lag di'nly = d between the project beginning 0 and the

project termination nn 4 L

The temporal constraints (1.1} connect the start times of activities ¢ and j.
Since by assumption activities must uof be interrnpted when being in progress,

is the completion time of activity 4. Thus, start-to-start, start-to-completion,
completion-to-slart, and completion-to-completion relationships among activ-
ities can easily be transformed into one anotlier {cf. e.g., Bartusch et al. 1088},

Remark 1.2, Some constraimts that occur frequertly In practice can be mod-
elled by pininuen and maximm time lags between activities {sce Neumany
and Schwinds 1997):

{a) Release date #; for the start of activity ¢ {(head of i) "™ =7,

1

{b} Deadline d; for the completion of activity ¢ € V' d2°° = d; — py-
{¢} Quarantine time ¢; after the completion of activity ¢ {tail of ¢):

TR A
ditir = Pi + G-
(d} Fixed start tine f; for aclivity 4@ dfF" = di1°7 = ;.

{e} Sinmltaneous start of activities ¢ and ji 3" = d1% = 0.
£} Sirmultancous comupletion of activities 4 and § with », = pyr
by
TIERT FYIeL: 4 Ty .
&5 = =pi -y
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(g} Conseentive exeeution of activities ¢ and j without any delay in betweers:
d'min . dﬂ'm-:
ALY
{li} Overlappmg of activities ¢ and j for at Jeast zy; < min(p;, p;) units of
1 LR e e VT e . e
thme: &} = p; - w5, 107 =y — iy

From 5 = 5; + p; # follows that the schedule for executing the activi-
ties £ € V' of the project is nniquely given by specifying the respective starg
times S;. That is why we shall always represent solntions to project schednling
problems by a vector of activity start times,

Definition 1.3 {Time-feasible schedule). 4 vector § = (84, 51, ..., Spp1)

a schedule. Schedule S is said to be time-feasible if i satisfics the femporal
constraints (1.1} The set of oll time-feasible schedules is denoted by Sp.

Obviously, set. Sy represents an integral polytope in Hﬁ‘;’gz. Assime that
Sy # § It is well-known thai the partially ordered set {Sy, <) possesses
exactly one minimum ES, where § < 8 precisely f 8; < 8] for all { € V.
We rafor to ES as the eerlicst schedule, Furthermore, by Remark 1.1 (Sp, <)
possesses exactly one maximun LS, which is termed the lotest schedule This
mcags that there is no thne-feasible schedule S such that 8; < ES; or §; > LS;
for any i & V. The interval [ES;, L8] is termied the time window {for the start)
of activity <.

Now let f: &7 — R be an objective function assigning a value f{8) to
eachs time-feagible schedule S, Without loss of generality we assume that the
objective function has to be minimized. The hasie téme-constrained project
scheduling problem caxr then be stated as follows:

Minimize f{5)
9
subiect 1o § e Sy 1.2

Definition 1.4 {Time-optimal schedule}. 4 lime-feasible schodule S solv-
ing the time-constrained project scheduling problem (1.2} is celled time-
optimad,

Al objective functions that will be considered in this book are lower seur-
closed. Bince set &y is compact, this property ensnres that there always exists
a time-optimnal schedule provided that &7 # §.

}.1.2 Project Networks

In this subsection we shall show how the activities ¢ € V and the tempo-
ral constraints S; — §; > &, for {{,7) € E can be represented by a project
network. Basically, there are three different types of project networks. Activity-
or-are or CPM networks associate an are {u,v) with cach activity 4, where
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the nodes w and v represent events {see Kelley 10611, CPM stands for “Crit-
ieal Path Method”, a temporal scheduling method based on activity-oneare
networks. w is the Hrsl start of all activilies ¢ belonging to arcs emanating
from nodo u, whereas v is the last completion of all activities 1 belonging to
arcs terpinating at node v, Are (w2} is weighted by the duralion p; of tle
corresponding activity 4. Thongl only precedence constraints can be modelied
by CPM networks, this type of project network is widely used in practice. In
general, dummy activities liave to be introduced for modelling the precedence
constraints among the activities and there is no unique representation of the
project as a CPM network. The problem to assign a CPM network to the
project in question using a mininuun wrgber of dumny activities is kuown to
be NPehard {ef. Garey and Johnson 1979, problem NDd4), Nemmann (190%a)
devises an O(n®) time algorithn for the construction of a CPM network with
a gmall uunber of dummy activities, which is based on a procedure by Brucker
{1573},

{u activity-on-node nefworks, the nodes are identified with the activitios.
For each time lag 8;;. the network contains one are {4, 7} with initial node ¢
a1l torminal node §, Le., V' is the vode set and E is the arve set of the nelwork.
Anare (4,4} € £ is weighted by &5, Activity-on-node wetworks beloug 1o the
class of MPM networks {cf. Roy 1964, Sect. T1.2.1). MPM is the acronyvan of
“Metra Potential Method”, the temporal scheduling method for activity-on-
node networks to be discussed in Subsection 1.1.3. Similar to CPM, MPM s
baged on caleulating longest divected paths in the project network, Obviously,
activity-or-node networks can cope with general temporal constraints, In ad-
dition, due to the one-to-one correspondence between precedence relationships
and ares, there is a unigue activity-onenode representation of the project {¢f
Newmann and Schwinds 1997}

Ehrnagliraby snd Kemburowki {1992} have introduced the following event-
on-node nefwork. Bacl real activity 1 is ropresented by two events % and % in
node set V. % corresponds to the start and ¢ to the completion of activity i
Both nodes arc linked by two arces {4°,49) and {29,¢0%) with welghts 8,500 w p;
a1l djegs ~p. For each time lag &;; between activities 4 and j, arc set
contelng an are (49, 7°) with welght & = &y — . Analogonsly to activity-
on-unode networks, the ares of the resulting MPM network can be iterpreted
as mHnimum and waxinouy time lags between the incident events. The arcs
(25,1} and (2°,4%) slate that the completion of activity ¢ must ocenr exactly
p; nnits of thne after its start, le., activity 4 mast not be interrupted. The
arcs {1%, 7% represent completion-to-gtart Ltime lags between activities £ and j.

Example 1.5. We consider a project with four real activities ¢ = 1,2,3,4 for
which we assinne that activities 3 and 4 eannot be started before activities |
and 2 have been completed, The project st he completed by a preseribed
deadline d. Figure 1.1a shows the corresponding activity-on-are project net-
work, where the dashed-line arcs represent. charmny activitios required for mod-
elling the precedence relationships. The ares are labeiled with the dorations
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of Lhe respeciive activities. The aclivity-on-node network of the project is
ghown in Figare 1.1h, where square nodes correspond to real activities and
circitbar nodey represent events. By splitting up each real aciivity nto a start
ard & completion event, oue obtains the represeniation of the project as an
event-on-rnode network, which iy shown in Figure 1.1e

Fig. 1.1, Types of project networks {a} activity-on-are network; {b) activity-on-
node network; (¢} event-on-node network

Thronghout this monograph, we shall represent projects by MPM net-
works. If not stated otherwise, the project network is an activity-on-node net-
work. BEvent-on-pode networks will be used when dealing with project sched-
uling problems where events instead of aclivities take up resources {the case
of cunmilative resources treated in Section 1.3},

1.1.3 Temporal Schediding Computations

I this subsection we review the Metra Potential Method for the temporal
scheduling of the project, Let N = {V, F, 8} be the MPM network nnder con-
sideration, where 6 == {0;;)¢; e denotes the vector of arc weights, Temnporal
schednling consists of

fa} compuiing earliest and latest start thne of aclivities,

(b} finding the shortest project duration,

(¢} calculating total floats, early free Hoats, and late free foats of activities,
and

(d} identifying the critical activities with zcro total float



1z i Models and Basie Concepts

with respect to the temporal constraints (1.1},

A vector 7 & B2 g called a potential on project network N if the cor-
responding tensions 75 - 7 are greater than or egual to the respective lower
bounds &;; {¢f. Berge 1970, Sect. 5.3}, Let S be some schednle and assume that
Sy # §. Clearly, S is a potential ou NV il and only if schedule § s thue-feasible,
The earbiest schedile ES thus correspouds to the componentwise minimal po-
tential m = 8, and the latest schedule LS equals the componentwise maximal
potential © > 0 with mg = 0 {and thns w4y < d, see Remark 1.1}, In other
wordy, ES ig the mdgue solution to the following minimization problent

Minimize 3. i 7
subject 1o m; - w5 2 0 {{(4,7) € ) (1.3}
>0 (ieV)

Ly

Problem (1.3} corresponds to the time-coustrained optimization problemn (1.2)
where f{S) = 3.\ Si The latest schedule LS ix obtaimed by solving (1.3)
with objective function - chv w; and additional constraint wy = 0,

Now let D = (di)ijev be the matrix solving the following system of
equalions

dig = 0 (ie V)
dij = max {dg, +6) (GjeV i#) {1.4)
7 (ha)eE '

The values d;; can be interpreted as thme lags between activities { and § wlich
¥ gl 7
are induced by the set of given thme lags 6y ({4, §) € E).

Remarks 1.6,

{a) Due to é;; € 2 for all (4, ) € B, mateix I s infegral as well.

{by For each activity 4 € V), we assume that dy; 2 0 (Le, activity 4 caunot
be started before the project beginning) and d; .4 > o {Le., the projoct
cannot be terminated before all activities have beon comploted).

{¢} Bach node { & V in project network N s reachable from node 0 and
node 12+ 1 18 reachable from each node £ € V. Shice we always have a
maxinmun tme lag dift, = d 1)(-‘twou'z the project beghning
and the project teymination and tims {n+ 1,0) € F, project network N
i strongly connpectad,

(d) Without loss of generalify we assume that d is the latest project termina-
tion thne, Le., dypgp = d

{e} The minimum time lag between the projedt beghuning and activity ¢ equals
the carlicst start time I05; of activity ¢, La.,

ES;=dy lieV)

(fy Likewise, the maximum time lag between the project beginning and ac-
tivity ¢ equals the Jatest start time of activity €, Le.,

LS;w wdyy (G V)
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If there s no given waxinnun thue lag dfi°% = —d;p between the project
beginning and activity 4, then LS, = d — d; 41,
{g) The carliest and latest completion times of activity © are

EC; = ESy +p;and LC; == LS+ p; (e V)

Recall that a directed walk in network N is a sequence {41,4,...,7,) of
nodes of N such that (6,40 € B for all p=1,.. v 1, where the sum
2::&_; Giyinyy 18 referred to as the length of the directed walk. A directed
walk without any repetition of nodes is called a directed path. A directed
cycle Is a directed walk {dy, 40, .. . 4,41 ) sueh that {4, 4o, ..., 4.} 18 a directed
patl, The lower cquations in (1.4} correspond to the Bellman eqgnations for
calculating longest directed walks in MPM networks. Thus, each induced time
lag di; coincides with the length of & longest directed walk from node (o
noede ¢, provided that there is snch a longest directed walk, Since according Lo
Remark 1.6¢ network N s strongly connected, there is always a directed walk
in N from any node 2 € V to any node 7 € V. In Roy (1962) it is shown that
there exists a longest divected walk from any node 1 € V to any node 5 € V
in NV if and only if N does not contain any directed cycle of positive length.
On the other hand, syvstem of equations {1.4) possesses a solution precisely if
there Is a longest directed walk from ¢ 1o 7 for all £, 7 € V', In the latter case,
the longest directed walks in N coincide with the longest directed paths in
N, and f7 = (di; }ijev is called the distence matriz of N. Thus, we have the
following proposition.

Proposition LY (Roy 1862). There is ¢ time-feasible schedule for ¢ project
(v.e., Sp =8} i and only if project network N does not contain any divected
cycle of posttive length,

Let m = |E] denote the unmber of arcs n project network N. Prob-
fom {1.3) can be solved in O(mn) thue by the label-correcting procedure
shown in Algorithm 1.1 {cf. Bellinan 1958}, where ¢ is a quene. Although
this algorithin has been devised more than four decades ago, it is stil} the
most efficlent algorithm for solving longest-path problems in cyclic networks
with arbitrary are weights. The procedure may be termninated if some node 4
has been examined 4+ 2 thnes (see, eg., Alnja et al. 1993, Sect, 5.5). In that
case, {1.3) is unsolvable and thns Sp =@, which means that contradictory
teruporal constraints have been specified.

The solution D to equatious {1.4) is the elementwise minimal matrix sat-
isfying

iy v £ (e V)
dij > by ((4,7) € E) {1.5)
dﬁj = di + (f;?_}' (hi,7€V)

This formmlation gives rise to the following Algorithin 1.2 by Floyd and War-
shall {cf. Floyd 1962) for computing distances dyy for all 4, § € V. After having
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Algorithm 1.1, Parliest schedule

Output: Barliest schedule ES.

set dop om0, 6 e {0), and dy; o oo for albi € V3 ()
while ¢ 5 § do
deqgueuns ¢ from ¢
for all {¢,7) ¢ E with do; < do; + 6,5 do
set dg)' = E{-(Ji, -+ 513‘,:
if 4 ¢ ) then engrene § to O

initialized tho values di; according Lo the preseribed fime lags &4, the algo-
rithin computes the transitive closure of those thme lags by Heratively putting
mto force the friongle inequalities

dij = din + dny (1.6)

{1.53) and thus {1.4) is solvable exaetly if the matrix IJ caleulated by the
Floyd-Wershall aigorithm satisfies dj; = 0 for all £ € V., The nnmber of cons-
putations performed is O(n?), which is the best possible time complexity for
this problem {note that for checking whethoer or not distances dy; satisfy {1.5),
Of{n?} triangle incqualitics must be evaluated),

Adgorithin 1.2, Distance matrix

OQutput: Distance matrix 1.

for alli,7 £V do

i#H {4, 7) ¢ B then st diy 1= 045 elsif £ = j sob i = 0 else set d;; 1= 00
for all id,7 € V with du. > —ov and dr; > —occ do

if d%} <ty 4 d-h_j theu set (f-.ij =i + dgaj;

The next algorithin, which s due to Bartusch et al. (19388}, achieves the
apdate of the distance matrix D in O{n*} time when adding some arc (4, §)
to the project network (see Algorithm 1.3}, The caleulation of the distance
matrix D from scratch by initializing the values di; as in the Floyd-Warshall
algovithm and theu applying the algorithin for all ares {4, 4) € £ would re-
guire O{mn?) time, wihich is more expensive than using the Floyd-Warshall
algorithm. The former procedure, however, will prove useful later on when
dealing with resource constraints and the resolution of so-called resonrce con-
flicts, where individnal ares are added to N,
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Algorithm 1.3. Addition of arc (¢, ) with weiplht &

Input: Distance matrix D) an ave (4, §) with weight §;;.
Ouiput; Updated distance matrix D,

for alt g, h & V de
$ dgn < dg 4 By b dan then set dor = dg o+ 8 b dyas

Hemark 1.8, The update of digtances dyy (o1, cquivalently, carliest start times
ES,Y ofter the addition of some arc {4, ) to project network N eay be por-
formed iy Of{n} thne by putting day, == max{doy, dos + 8+ djn) forall h e V,
This can easily be seen by using the fact that the correciness of Algorithm 1.3
does not depend on (he sequence in which pairs (g, b} are Herated. Synunetri
cally, distances dgg {which coincide with the negative latest start thnes —LS,)
can be updated by putting dgo = max(dge, dgi + 05+ djn) for all g € V. More-
over, adding some are (0,7} to N does not affect distances dy {1 € V) and
adding some arc {4,0) to N does not affect distances doy (7 € V).

Proposition 1.9 shows that the creation of a directed eyele of positive
length when adding arc {4, §) to N can be tested before calling Algorithm 1.3,

Proposition 1.9. Let N be o project network with distonce matriz . The
addition of arc (1,7} with weight ;5 to N generates a directed cycle of positive
length if and only if 8;5 > ~dy.

Proof, Sufficiency: After the addition of are (i, 4) with & > —d;; to N it
fiolds that dy 2 &y, Thus, we have dy; + dyy 2 64 + dye > 0, which means
that there is a directed cycle of positive length containing nodes ¢ and 7.
Necessity: Now assume that 8y < —dyy and consider an Heration of Al
gorithin 1.3 for some palr {g, h) such that distance dgp Is inercased, Then
the updated distance is dygp, = dy + 65 + djn S dyy — dyp + dyp. The trian-
gle inequalities {1.6) say that dy; 2 dyn + dpg + dgi and thus dgg, + diy, <
dgs = (dsn 4 dng + dy} + dyn + dig = 0. This eans that after applying Al-
gorithun 1.3 1 holds that dg, + dp, < O for all g,h €V, Le,, N contains no
directed cycle of positive lengtl, ]

Next, we consider three different floats or slack thues of an activity 1 ¢ V.
The tofal float TF; s the maxiinm amount of time by which the start of
activity 1 can be delayed bevoud ity earbiest start time ES; such that the
project is terminated on time, Le., S, < d. In other words,

TE we LS o B8 = —ddipy — doy (?, z V)

Activity 7 € V' is called oritical 1T  cannot be delayed, fe., i the maxinunn
time lag —dig equals the minbmnm time lag dy; between the project beginning
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and activity © and thns fixes the start time 5; of ¢ to ES; = LS. Activity { is
crivical exactly o 7F; w O,

The early free floaf FFF; s the maxinuim amonnt of thne by which the
earhest sbart of activity ¢ at time B can increase given that any other
activity j can be begon at its earliest start thne £S5, Henee,

EFF, = y (ES; - B8 min {dgy ~dy) ~dy eV
(f?}iéf,{ b} - j@%v:?l:?éj({ oj = dhij) —do. (BEV)

The late free float LFF, is the maximum amonnt of thme by which the latest
start of activity ¢ ab thme L8, can decrease given that any other activily 5 can
be begun at its latest start times LS. Thus,

LFF; = L8 — max (LS; + 6, = mm {doo—du)—dn (V)
{50 E Wity f

1.2 Renewable-Resource Constraints

To perform the activities of & project, different types of regources are required.
Rasgically, we may distinguish betsveen resources whose availability solely de-
vends ou the activities being in progress (like ruanpower or wmachinery} and
resources for which the availability results from the entire project history
{smich ag the project budget, maberials, or storage space). In this scction we
deal with renewable resources, whicls belong to the former type and to whicly
the overwhelming part of research in the field of resonrce-constrained project
scheduding lias been dedicated. The case of cumudative resources, correspond-
ing to the second type, will be discussed in Section 1.3, In the present section,
we suppose that no cumtlative resources need to be considered. At first, we
provide a formal statement of the constraints arising from the scarcity of re-
newable resources. We are then concerned with conditions on the sbart times of
activiiies whose joint requiremients for renewable resourees exceed the rescurce
capacities aud which thus cannot he in progress simultancousty. Finally, we
discuss consistency tests for detecting temporal constraints that are imphed
by the Ihnited availability of repewable resources.

1.2.1 Resource-Feastible Schedules

Let R# be the set of renewable resonrces k with copacity Ky € N U {oc}
Lthat have been assigned to the project during the project definition phase.
By = 00 means that the availability of resource & is not explicitly bonnded
from above bnt can be adapted, at a certain cost, to any nsage over tine,
The resource estimation yields {resource} reguirements vy & Zsg for each
real activity 4 & V*® and each resowree & € RP. vy corresponds to the monber
of capacity units of resource & which are taken up for processing activity 4
from start time S; (inchisively} to cormpletion time G = 8 + gy {exclusively ).
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P = 0 means that activity 7 does not use resource k. Furthermore, we assume
that
rg SR (e V4 keRA

which ensures that sufficient rosonree capacity is available for processing each
activity dividually. For simplcily, we may omit resource index & when there
i anly one renewable resaurce avallable,

Now let S hie some schedule and lot £ be some polyt W thne, Then

A(S ) == i€ VO[S <6< 8+ pi)}

is the active sel of activities heing in progress at time 1 The corresponding
reqrirement for resource A € RP at thne ¢ s given by

ri{S, 1) = Z Tik

igAS )

For given schedule S, funetion v (5, -} - R = Zixp I8 termed the loading profile

for renewable resource k. r(S, ) Is a vight-continuous step funclion with at

most 2n jump discontiunities. Obviously, we have v (5,4) = 0 for all ¢ < &
The rencwable-resource constrainis can be stated as fallows:

(S < By (ReERF, 02t <d) (L7

Definition 1.10 {Resource-feasible and feasible schedules). 4 sched-
ule 5 solisfying the rencwable-resource construints (1.7) 4s celled resource-
feasible with respect fo renecwable resources k € RP. The set of all resource-
feasible schodules is denoted by Sp. 8 1w Sp M Sy is the set of oll feasible
schedules,

Ag we shall see Iater on, nolike the polytope of Lime-feasible schedules Sy
set Sy represents a finlte nanion of polytopes which s generally not connected,
As an interscction of a polytope and a fintte nnion of polytopes, § is the union
of finitely many paolytapes as well, Besonrce allocation cansists in assigning
start times S; (and thus execntion thwe ntervals S, Cif) to the activities of
the project suech that the corresponding schedule 8 = {8 )iy is feasible and
mininizes the oljective function oy set &

The basic resource-constroined project scheduling problem with renewable
resources reads as follows:

Minimize f{S)}
subjecl to S €& NSy

(1.8)

Recall that we have assnmed abjective function [ ta he lower gemicontin-
nous. The compactiess of & then hinphies that there oxists an optimal solution
to problem {1.8) precisely if & # 8. Note, however, that due to the presence
of maxinnpn thne lags it may happen that Sp 4 8 and Sp o @ but & = 8,



18 1. Models and Bosic Concepls

Definition 1.11 {(Optimal schedule). 4 feasible schedule S solving the
resource-constratned profect scheduling problem (1.8} 45 called optimal.

By replacing the set & w= Sy M &g of feasible schednles with the set
of resource-feasible schedules 8p we obtaln the femporal relaretion of the
resonree-constrained project scheduling problemy (1.8). Since we have assumed
that v < By for all i € V* and all £ ¢ B2, each schedule carrying out the
activities one after another 18 resource-feasible. The resowce relazation of
(1.8} arises from deleting the resource constraints {1.7} or, equivalently, set-
ting Fy = 00 for all & € R7. The resonree relaxation coincides with the basie
time-constraited project scheduling problem (1.2} As we noticed in Subsce-
tion 1.1.3, the existence of a time-feagible schednle can be checked i Of{mn)
tirne by applving Algoritlig 1.1 to project network N, The following theore,
however, shows that it cannot be decided in polynomial time whether or not
there exists a feasible schedule.

Theorem 1.12 {Bartusch et al. 1988}, The following decision problem is
NE-complete.

Instance: A project with one rencweble resowrce ond requirements
i =1 forallia V"©,

Question: Does there exist a feasible schedule?

Proof. The feasibility of a given schedule S can be checked by computing
S; — 8 for all ares {1,7) € & of project network N as well as the resource
requirements r.(S, 1) for all resources & € R? and all start times ¢ = 5, of
real activities ¢ € V. Thus, verification of schedule feasibtlity can be done in
polynomial time, and the problom to decide upon the existence of a feasible
schednle belongs to NP, fn Bartusch et sl (1988) 1t is shown by transformation
from problem PRECEDENCE CONSTRAINED SCHEDULING with m processors
and strict order < that the decision problem whether or ot & # § s NP-
hard., An equivalent lnstance of the latter problemn is obtained by considering
one renewable resonree with capacity R = m and choosing vy = I, py = 1,
dii = 0,4, = orall i € V7, as well as dlf™ s 1 ¢ < j and dfies, = 3.

[}

When dealing with the project duration problem, we may drop the as-
sumption that there Is a deadline d on the project termination becanse tho
objective is to maximize the slack d — 8,41 of the deadline constraint. The
construction of a feasible schedide then twrng tolo an easy problemn if there
are 0o maxinum Hme lags siven. In that case, project network N is acyche,
and the activities can be scheduled consecutively according to any topological
ordering of the nodes i e V of N,
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1.2.2 Forbidden Sets and Delaying Alternatives

‘FThe resource-feasibility of schedules s closely related to the concept of forbid-
den sets introduced by Radermacher {1978). The forbidden-set perspective of
resonree copstraints s useful for investigating the set § of feasible schednles,

Definition 1.13 (Forbidden and feasible sets). A set of veal activities
F CV* s called a forbidden sel if there 45 some resource & € RF such that

Zm > Ay

i

IFF s Comingmal in the set of adl forbidden sets, we speak of o mindnal
forbidden sef. By F we denote the set of oll minimal forbidden scis. A4 sel

mazimal feasible sel if i is Comomimal in the set of all feasible sets.

When solving the resomce-constrained project scheduling problemn (1.83,
the activities from a forbidden set F mmst be scheduled i such a way that
they do not all overlap iu time. In other terms, each forbidden set F hos to
be partitioned mto a feasible set A and some nonempty set 5, vo activity
from set B bhelng executed simultaneonsly with sl activities from set A In
Hterature, such a set B is called o delaying alteroative {of, e.g., Chiristofides
et al. 1987 or Demeulemeester and Herroelen 1992, 1997}

Definition 1.14 (Delaying alternative}. Lei F be o forbidden set. B C F
i4 called o delaying alternalive for F f '\ B is a feasible set. If additionally
B is C-minimal in the set of all deloying clternatives for F (e, F\ B is a
mazrimal feasible set), we speak of o mindmal delaying alternative jor F.

The mmmber of minimal delaying alternatives for a forbidden set ' grows
exponentially in the cardinality of set F. Given some forbidden set F and a
minimal delaying alternetive for F by evaluating the following two conditions
(1.98) and {1.10). This can be achieved in O(R?||F) time,

S" ra < Ry for all k € R? (1.9)
TTAY:
Z T +mingg, > Ry for some k€ RP {1.10}
jeB

i P\B
Nevertheless, Newoanr et al, {20035) have shown that a minimal delay-
ing alternative B cannot be generabed efficiently by iteratively transferring
activities from sct F to set B,
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Proposition 1.15 (Neumann et al. 20035, Sect. 2.5}, The following de-
cision wroblem is NP-complele.

Instance: A project with ene rencwable resource, a forbidden set F,
and an activity h & F.

Question: Does there exst a manimel deleying olfernative B for F
conkaining h¥

Proof. Sines conditions (1.9) and {110} can be verificd in polynomial time,
the problem is comtained in NP. Lot B with A € B be an arbitrary set of
activities neing the single resource. Then B is a miniinal delaying alternative
if and only if R~ minjenr; < Z?-_G P a T < K. For v, = 1, we then have
rpow minep g and thus BT <) o pr < Rode, 300 gt = B Hence,
there 18 a minimal delaying alternative B containing & exactly if there Is a set
A G FANAR} with 37, e = R Now let T be an instance of problom SUBSET
Sun with index set 7, sizes s{i) € N for ¢ € Z, and threshold M ¢ N (cf
CGarey and Johnson 1879, problews S13). We obtain an cquivalent justance
of our decision prolilem by choosing F = T U {k}, v = s{é) for all ¢ ¢ 7,
=1 and R =M. [

Similarly # can be shown that it is also NP-complete to decide whether a
givenn activity A is contained in some minhual forbidden set F ¢ F {¢f. Stork
and Uetz 2005, who devise a polyuomial tragsformation from PARTTTION].

in what follows, we describe a recursion for computing minimal delaying
alternatives for a forbidden set 7 (see Neumann of al. 20035, Sect. 2.5}, Given
a delaying alternative B, the set B of all minimal delayving alternatives B C B
for F' s either equal to {B} if B Iv a minimal delaying alternative for ¥ o1
equal to the set of all minimal delaying alternatives B’ ¢ B\ {¢} for F with
i € B. To aveid the madtiple generation of one and the same minimal de-
laying alternative B {as subset of two different sets B\ {i1} and B\ {iz}),
we restrict the recursion to subsets B of B\ {i} for which 7 > { holds for
all j e {B\ {1\ B Sinee F itsclf iy & delaying alternative, which ncludes
all minimal delayving alternatives for F, we start the recnrsion with B = F.
Algorithin 1.4 sbows the corresponding recnrsive procedire, where ¢ = 0
B ow I oat recursion level 0 and ¢ is the number of the activity removed in the
precediug call to the recursion, otherwise. A call to MinémalDelayingAl-
ternalives(F, () debermines the set 5 of all minimal delaying alternatives for
forbidden set F

An alternative approach to calculating all feasible subsets A € F {and
this all delaying alternatives B = F'\ A} hag been proposed by Brucker et al.
{1808). Assume that F = {{y,ig,...,4.}. Brucker's procedure constricts a

#— 1 corresponds to the decision whether or not activity €, Is contained in
the respective child node at level g, BEach leaf of the decision iree helongs to

some feasible set A ¢ {41.4y,...,%,} and branching from a node at level

one feasible set A,
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Algorithm 1.4, MinimalDelaying Alternatives{ B i}

Input: A project, a forbidden set B, an index 4,
Ensure: B contains all mimimal delaying alternatives B° € B for F with
min{ B\ BY > 4.

if B osatisfies {1.9) then (B s delaying alternative )
if B satisfies {1.10) then {=  is minimal delaying alternative «}
B.=Bui{B}
else
for all j € B with 7 > ¢ do MinimalDeloyingAlternatives{ B\ {§},4}

The following proposition establishes the rclationship between minimal
delaying alternatives and minhmal forbidden sets.

Proposition 1.18 {Schwindt 1998¢). 4 minimal delaying alfernative B
for a forbidden set F' is an Cominimal set containing an aclivity § of cach
mandmal forbidden set F' C F.

Proof, We assmne that theve is a minhnal delaying alternative 3 for F and

Since every superset of & forbidden set s forbidden, this contradiets the fact
that F is forbidden 0

1.2.3 Breaking up Forbidden Sets

When scheduling the activities of a project, resource conflicts caused by the
simultancous execution of the activities of soine forbidden set have fo be re-
solved. The following theorem by Bartusch ot al. {1988) shows how resource
conflicts can be settled by introducing precedence constraints bebween active
ities of minimal forbidden sets.

Theorem 1.17 {Bartusch ef al. 1988). A schedule S 18 resource-feasible
if and only if for each minimal forbidden sef F € F, there are fwo aclivities
i, € F such thet S5 2 S; 4+ py.

Proof. Sufficiency: We consider the active set A(S, 1} for a resonrce-infeasible
schedile S at some time ¢ > 0 such that A{S, 1) 15 forbidden. Smce A(S, )
is forbidden, there is a subset F'of A{S, 1) that s mindmally forbidden. By
definition of A(S, £}, all activities of F overlap st time ¢, which hnphes that
there are no two activities 4,7 € F with 5; = 8, + p;.

Neecessity: Assime that there is some minnaal forbidden set F {or which no twe
activities ¢, @ F satisfy 5; = Si+p;. Then {55, 8¢+ p{ S5, 8 + pil o 8 for
any two activities 4,7 € ¥. The Helly property of ntervals {of. e.g., Golmnbic
2004, Sect. 4.5) then implies that MyerplS, S + pi[# 8, and thus there i3
some point i thine § at which all activities ¢ from set F overlap, Since F is a
forbidden set, rp (S, £} = 3 . prep > By for some k& RP. U3
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As a direct consequence of Theorem 1.17 we obtain the following Corallary.
Coroliary 1.I8 {Bartusch et al. 1988). The set § of oll feasible schedules
represents the union of findlely many integral polytopes.

We say thal o constraint € breoks up minimal forbidden sot P if for cach
schedule satisfying C, there are two activities ¢, 7 € F such that 5; > & + p,.
Minimal forbidden sets can be broken up in different ways, According to
Theorer 117, the first possibility consists in choosing two activities i,7 € #
and introducing an {ordinary) precedence coustraint

S = Sy (1.11}
bhotween 4 and §. Alternatively one may define a disjunclive precedence con-
straind

S; = min (8, +p 1.12
o ?'.(-EP:%';E}'[L i pn} ( )

between set F'\ {41 and activity 7 saying that 7 mnst not be started be-
fore the carliest completion of some other activity ¢ from set F. Dishunetive
precedence constraint (1,12} is equivalent to the digiinction of the precedence
constraints {1.11} for all 4 € F'| ¢ & § and represents a so-called linear reverse-
eonvex constraint (see, eg., Tuy 1993, Sect. 7). Whereas the munber of alter-
natives for breaking up ' by precedence constraints is O{|F|%), this number
is of Hnear order O{F!} when using digjunetive precedence constrabuts. The
set of all schedules satisfving a dighinctive precedence constraint is generally
disconnected and thus in particular nonconvex. As will be shown in Snbsec-
tion 3.1.2, the mindmization of regular (Le., componentwise nondecreasing)
ghicctive functions can nevertheless be done with a time complexity that is
linear in the maximum project duration d. In lterature, disjunetive preee-
dence coustraints are also referred to as AND/OR precedence constrainis or
waiting conditions {cf. Méhring i ol. 2004}, They have heen introduced by
Igelmumd and Radermacher {1983} in the form of preselective strategies for
resonrce~constrained project scheduling with stochastic activity durations.

An arbitrary forbidden set F is said to be broken up i all minimal {or-
bidden subsets of F' are broken up. Let B be some minimal delaying alterna-
tive for . From Proposition 1.16 it then follows that breaking up F can be
achieved by imposing a set of precedence constraints

S;zSi+m (j€B)

between some activity { from the maximal feasible set A = F'\ B and all
activities 7 € B or by a digjunctive precedence constraing

min Sy = min(S; + pi)
jeid A

between set 4 ond set 53, Note that i the case of precedence constraints, one
and the same activity ¢ € F\ B cay be chosen for all 7 € B beecanse any
corjunction of precedence constraints {1.11} for the activities § from delaying
alternative 17 imphies shifting all § € B behind the earliost Hnishing activity
i e F\ B which breaks np forbidden set F,
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1.2.4 Consistency Tests

The NP> hardness of finding feasible schedndes implies that resonree allocation
ean only be performed by emuuerating aliernative sets of precedence relation-
ships smong sctivities using conunon resowrens. Consistency fests designate
algorithms for detecting constraints that mmst be satisfied by any feasible
schedule and thal can be evaluated withont emuneration to rule ont in ad-
vance cerfain inadmissible alternatives from {urther consideration. A consis-
tency test is desceribed through a condition and a constraint that can be os-
Lablished whenever the condition is sabisfied. From a geometric point of view,
applyving consistency tests provides a convex set containing all feasible sched-
nles. In the best case, this convex set coincides with the convex hull conv{&) of
thie feasible region. From Theorem 1.12, however, it immediately follows that
conv{S) cannot be computed in polynomial time {otherwise, problem {1.8}
with linear objective Mnetion f conld be efficiently solved by finding some
optimal vertex of conv{&}}. Since & ig the union of finitely many integral
polytopes, the convex hull conv{&)} is integral as well,

In enumeration procedures, consistency tests are often applied dynamically
to the search space of any enumeration node. The tests then refer to scarch
spaces rather than to the feagible region. I scheduling literature, consistency
tests are also known under the names preprocessing (if they are applied to the
root node before starting the emuneration), hmmediate selection algorithms,
edge Onding roles, constraint propagation techniques, or satishability tests.
Instead of directly checking given conditions, consistency tests may also try
to refute additional, hypothetical constraints. If the test rejects the hypoth-
esis, the alternative hypothesis has been shown to be trize and thns can be
used to roduce the search space. Consisteney tests have been applied with
greab success in machine seheduling and for the resource-constrained project
duration problem {see Brucker et al. 18958, Dorndorf ot al. 20004, or Dorndorf
et al. 2008¢). The algorithm of Carlier and Pinson {1989} that solved the fa-
raons Figher and Thompson (1963) job shop scheduling problemn with 10 jobs
and 10 machines for the first time has become a classical reference in the feld.

We review some consistency tests that have been proposed in lterature
for project schednling with renewable resources {see, e.g., Dorndorf et al.
1989%, All procedires to be disenssed provide additional temporal constraints
that can be added in the form of arcs to project network N, Let d;; again
denote the lengtly of a longest directed path from nede @ to vode § in project
network N, where we assuine that Sy # . Consistency tests are nsnally nsed
in an iterative fashion as long as new temnporal constrainis can be identified
and this distance matrix D is modified (see Algorithn 1.5, where I denotes
the set of consistency tests to be applied). The reason for this is that due to
updating distance matrix D, certain tests that i previous iterations failed
may possibly deduce additional constraints. In general, the distance matrix
vielded depends on the scquence in which the diffcrent tosts are applied. ¥For
the consistency tests to be disenssed bhelow, however, it can be shown that
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the resulting matrix is nnique {¢f. Dorndorf et al. 20088}, More precisely,
any econsistency test can be interpreted as a function v mapping distance
nutrices [ to updated distance matrices v(D), U for all eonsistency tests
ve I, 1< D implies v(D) < v{D%Y, then there exists only one fixed-pohist

Algorithm 1.5, Search space reduciion by consistency tests v ¢ I

Input: A project, a set I of cousistency tests,
Output: Updated distance matrix [0

compute distance matrix D) {= Algorithin 1.2+)
repeat
for all consistency tegis v € I do
apply 7
i pow temporal comstraint 55 ~ 5 2 §;; has been established then
update distance matrix D, Le., set 17 1= ~{D); {+ Algoritlm 1.9 %)

until distance matrix I} has not been changed during last Heration,
return distance matrix D

Disjunctive activities tests try Lo establish precedence constraints be-
fween activities which cannotl be processed at the same time. Let 4,7 € V¢
be two different real activities that, with respect to the temporal constraints,
can be executed in parallel and for which 7 cannot be completed before ¢ is
staried, Le.,

—p; < dy; < pyoand dy; < py
We say that 1 and § are in disjunetion if due to the resource constraints they
cannot be processed at the sane time. In that case, we can introduce a new
precedence constraint S > S 4 p; between ¢ and 7 thal will be satisfied by
any feasible schedule 5.

Obviousty, the activities of twe-elemnent forbidden sets are in disiunction.
However, ¢ and 7 may also be in disjuuction if 7 -k vy < Ry for all k & RP.
Brucker et al. (1998) have usced the concept of symmeiric triples for finding
such activities. We call {h, 4, 7} a symmetric triple if {h,4, 7} is a forbidden set
and aclivity & must be exeented shmdtaneously with aetivity £ (Lo, dpy > —
and dig > —p) and with activity § (e, day > ~py and djy > —pp). For a
sysnetric triple (A, 4, §}, activities 7 and § canpot be i progress ab the same
timne because this would imply that k, 4, and 7 were carvied out in parallel,
whicle is impossible becanse {h, 4, 71 is a forbidden set, Obviensly, detecting all
symmetric triples takes O(n®) time. After having established a new precedence
constraint, distance matrix D must be npdated, which can be done in O(n®)
time by using Algorithm 1.3

Many consistency tests are based on lower bounds on the work that st
be perfornied in certain time intervals [o,bf with 0 < @ < b < d. Those tests
are referred Lo as energetic reasoning (“raisormement énergétiqne”, see Lopez
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et al, 1992} or interval capacity tests (Dorndorf ot al. 1990, b —a =1, we
speak of unit-interval capacity tests. Given some schedule S, fi}rk(s} £ydt is the
workloud 1o be processed by resource k & R? in time interval o, bl R (b — a)
i termed the inferval capacity of resource & in interval [a, b, The exeention
time of activity 7 in interval e, bl equals (min{b —a, pi, €5 —a, b — S))7, where
{a)" = max(0, x). [t follows that the workload of resource & in interval [a. b]
canl be written as 3o rg{min{b — a,;, Cy - a,b - §3)". Now let

pi{a, by = (mimlb —a,p;, BC; —a,b— LS (1.13)

denote the minimam time activity € has to be processed in interval Jo, b For
any time-feasible schedule § € St

wyla, by = Z rippila, b} (1.14)

iy

then represents a lower bound on the workload of resonrce k & R? i [a, bl
Dorndorf et al. {2000¢) have nsed energetic reasoning for Anding further
activities £, § being in dishunction. ¢ and 7 are in disiunction if for all times ¢
at which the temporal constraints allow both activities te be in progress,
the combined resouree requirements of ¢ and § for some resowrce k& € RP
excecd the meximum residual capacity of & at time £ This condition can
be formulated as follows, Activities 4 and 7 may be executed in paraliel at
time £ i £y < ¢ <ty where £y = maxhwax{ES;, ES; ), min{FC;, BC;) - 1]

interval [t,1 4 1] {or, equivalontly, the minimmun requirement at time ¢} that
& due to the excention of activities from set VN {4, 7} equals we{ft + 1) —
raepi(t,t+ 1) — rpi (8,0 4+ 1) Acecordingly, activities ¢ and § caunot overlap
in time if there exists a resonree & € R such that for all £ € {1y, 6]

v i > Ry Jwg (8,00 1) e i, 84 1) i (6,8 4 1) {1.15)

For given resource & € R, the core loading profile v + R »» Tg where
rE{ty = wi{t, £ 4 1} represents o lower approximation to the loading profiles
ri{5, ) of all thne-feasible schedules § & Sp. By using a support-pelut rep-
resentation of step function rf, all disjunctive activities 4,7 € V' satisfying
(1.15) can be identified fu O(|RP[n®) tune {cf. Dorndorf et al. 2000¢). Each
time 8 now precedence constraing as been established, we have to recalenlate
the earliest and latest start times of aclivities and to update 1he core loading
profifes of renewable resonrees, which, for given distance matrix D, requires
QR nlogn) time. Reeall that after the addition of an arc {4, 5} to project
notwork N, the earliest and latest start times can be npdated in linear thue
{see Remark 1.8).

The shaving techuigue is intended to tighten the thne windows [£5;, LS}
of activities 4 € V° by falsifying hypothetical earfiost or latest start times, We
first congider the case of a hypothetical earliest start time ;. Assnine that after
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the addition of the respective arce (0,4) with weight #; to project network N
it holds that

we{t, i+ 1) > Ry (1.16}
for some resource & € R and some time §, Then the capacity of resource & is
not snfficient. to maich the reguivanents for resonrce & at time f, Le., we have
shown that any feasible schedide § satisfies S; < f; — 1 {recall that conv{S)
i integral). For each activity 4, the values for ¢; can be tested according to
a binavy search i set [ES;, LS O 2, where §; is deareased if the test fails in
refuting the hypothesis, and ncreased, otherwise, Testing hypothetical latess
start tmes can be performed analogously, When we apply the test o a given
activity © € V', we have to npdate the core loading profiles #§ at cach era-
tion of the binary scarch, which again takes QK |nlogn) time, Obviously,
ineqguality {1.16) needs only to be evaluated at inmp-np discontinnities of the
core loading profiles, Le., at poluts £ = L5; {f & V). Thas, the time complex-
ity of applying shaving to activity ¢ is Oflog d[R*|nlog n). Since updating the
core loading profiles is included i the shaving procedure, establishing a new
earlicst or latest slart thne does not inaw any additional effort,

The following unit-interval capacity test detenmines points in time at
which certain activities cannot be execnted. Consider some real activity ¢ € V¢
LS, = £+ 1), In this case, activity ¢ cannol be carried ont at thme ¢ if for some
resonree k € RP

w(b 1) g > By

which baplies S; € [ES, ¢ — pf U+ 1, LS} for any feasible schednle § {(note
that due to pilt, £ + 1) = 0, requiverneny 75 does not enter into workload
wglt, £ 111 Two particular cases allow the introduction of additional tempo-
ral congtraints. 114 s less than the carliest completion time EC; of activity 4,
we obtain S; = £+ 1, and i £ is greater than or equal to the latest start time
time f coinciding with the latest start the LS; of some 7 € V©. Accordingly,
applying the unit-interval capacity test to activity { requires O{{RP|n) thne.
The update of core loading profiles after having established a new carliest or
latest start time can again be performed in C([RPnlog n) time.

The activity-interval capacity test generalizes several consistency Lests
that have been devised for machine scheduling (see Dorndorf et al. 1999). Let
I C V* be a nonempty set of real activities and let U7, U U he two subsets
of /. If for some resonree & € RO, the interval capacity in the interval from
the carliest start of an activity fron set U\ U to the latest completion of an
activity from set U\ U7 s less thay the workload of the activilies from set I
b,

IIIIII y . . oy gy L s

L TREPL & }?k max (LC"b’ ..- :“53?} {I] {)
ol geENUY,

het) hal\oe

then there is some activity from set U' that is started first or some aclivity
frore set. I that is completed last among the activities from set U
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mm Sy < min 5, or nwx Cyp > max € (1,18}
el hea N LTF iy gEEn L

For certain choices of sets U7 and U7, the disjunction {1.18) results in tenparal
constraints {cf. Talle 1.1}. The correspanding consistency tests are known as
input, autput, upnt negation, and autput negation tests. The compiational
effort associated with the differcut activity-liderval consistency tests will arise
from the analysis of the next consistency test.

Table 1.1. Specific implementations of the activity-interval capacity test

Teat (L0 Temporal constraint{s)

fapnt ({e}, i S8 >iforallj el i1

Output (# {5 S; S zp—pt1foralli el iy

faput negation (N {7}, {71} S = min{ {1{3\11{1 }F!S,, _ n;ﬁ( EC; wp;}+ 1

Ontpmt negation ({3 UN £y S < max( mn{z }LS?, H{if\ﬁ{& LOj—py -1
gedd

The general interval capacity test refers to time intervals o, 8] for
which the residual interval eapacity (b — o) — wifa, b) for given resource
ke R? is minirman. In Schwindt {1908¢), Sect. 5.3, fmd, independently, in
Baptiste et al. {1999) it has been shown that intervals {g, 8] with minimom
resicual interval capacity can be detenmined hy mvoaizgatzzzg, O(n?) critical
intervals {where interestingly it is nat sufficient to copsider anly intervals
whose endpoints coincide with earliest or latest start or campletian times).
Similarly to the shaving technigne, we may estahlish a hypoathesis on the
consistency of sore ternporal constraint 8;— 5 = £5;. M under this assuraption
there i a resource & with

max _wg{e, by > Rp(b—a)
O<achsd

the liypothesis has been refuted and thas we can intradnee the reverse tempo-
ral constraint §; — S; > —t;; 4 1. For cach pair (¢, 7} € V* x V¥ where i # j,
a binary search in set [dj;, ~d;;] N2 provides, within O{logd) iterations, the
mindroum £y for which 5, ~ 85 = ¢y can be dispraved. Since far given re-
saurce k, an interval [o, 4] wit.h minby residual inferval capacity can be
ford in G(r®logn) time (cf. Scliwindt 1998¢, Sect. 8.3), the time requived
for applying the general interval capacity fost ta a given pair (7,7} is af arder
Oflag AR In? lag ).

The general interval capacity test represents a genershization of all ackivily-
interval consistency tests Bsted in Table 1.1, This can be seen as fallows. Can-
sider, for given sets U, U', U7 the time iiterval [a, b] where a 1= minge g ES,
and b 1= maxyeen e LC,. Then the right-hand side of inequafity (117} co-
izzt ides with the inte,r\mf capaci 1‘3! Rk(b — a} (}f izai,oz'vaf a, b{ We fir‘si; show
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be a set coutaining two different sctivities 4, 7. According lo Table 1.1, we
choose U = {i and U =8, 1e, o = mingen o) £5, and b = max gy LCy,.
Now assume that §; — §; 2 0. Then minger \{ 3 BS, = minger BS; and
thus [£5,, O C fa,b] for all A € U, which implies LM{ Takln < wila, B
This means that any temporal constraint that can be deduced by using the
input tost also arises from applying the general interval capacity test where
for each pair (4,7}, time lag {,; is chosen to be eqnal to 8. We now tirn to
the input negation test with U/ = U7\ {5} and U” = {j}, Le, a = ES;
and b = maxpen gy LO,. We dpply the general interval capacity test w;t,}
hypothesis Sy — 85 2 —ninDuingern 15y £5,, maxpen 5 £CL — py). From
5; < mingern g ES, it follows that ES, > ES; = a for all g € U\ {5},
dzzd S py < maXpen 1y £C, implies LC; < maxgeqn 51 LC, = b We then
again iza\*(, [ES,, LCL|G o8 {or all B e {/, For reasons of symmoelry, the
output and output negation tests can be dealt with analogously.

The energy precedence test has been devised by Laborie {2603). i there
is pn (impled) minimum time Iag diy > o between the starts of activities ¢
and j. then o workload of rpp; ubits has to be processed on each resource
kE ¢ R? between 5; and &;, which takes at least maxpene rupps/ Ry units of
time. Thus, for each fm%xbio schiedule 8 we have

S;z  min_ ES; 4 omax [ Z n;;,\_p;:/.li?k"

6V odiy e BERD
e Ve p;

Note that in coptrast to the preceding interval capacity tests, the efeclive-
ness of the energy procedence test is independent of the tightness of time wine
dows [E'S;, LS;]. Applying the energy precedence test to activity § requires
OUR? I time. I the encrgy precedence test is applied to oll activities, the
amortized computational effort pey activity can be decreaged to Q{{R?| 4 n).

1.3 Cumulative-Resource Constraints

Curynlative resources represent a generalization of nonrenewable resources ke
money or raw materials, wiich bave been studied in the comtext of project
schediling protlems where activities can be performed in one out of several
alternative execution modes differing with respect o duration and resource
requirements (cf. e.g., Weplarz 1980 or Slowiiski 1981}, Unlike rencwable re-
sonrces, which are used during the execution time of activities and released
after completion, nonrenewable resources are consumed. Since the availability
of nenrencwable resources Is noniucreasing over time, the feasibility of o re-
source allocation and the respective cost incmred is independent of the sched-
ule & established and solely depoends on the assignmoent of execntion modes
to activities. Thns, nsonrenewable resources can be disregarded if each activ-
ity can only be performed in one mode. How to solve the mode assignment
probler in cage of multiple excoution modes will be discnssed in Section 5.3,
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In practice, resources that arc consumed are generally renewed laber on. If
the replenishiment ocenrs during the project execntion, the availability of the
resource inereases ab certain points in thne. In that case, Lthe feasibility of a
schedule generally depends on the segnence of depletions and veplenishinents,
For example, in many real-life projects certain project activitios are associated
with dishursernents for materiale or staff leasing, and progress payiments arise
for completed subproiects. It may then be necessary to delay certain dishuwrse.
ments behind payments in order to avoid a negative cash balance. Resources
thal are depleted and veplonished over time ave called cumudalive resources.
The concept of cxunlative resonrees has been inbrodueed by Schwindt (1998¢).
A cxmnnlative resonree can be regarded as the inventory level in some storage
facility of finite capacity. The inventory level is bounded from below by some
safety stock and bounded from above by the capacity of the storage facility.

Carlier and Rinnooy Kan {1982} and Carlier {1988} have dealt with the
special case wlere activities eonsume nonrepewable 1esonrces that become
available at given points in time. The anthors provide a polynomial-thme al-
gorithm for minhmizing regnlar and max-separable objective functions f. In
addition they show that in presence of replenishing activities the optimization
problem becomes NP-hard.

Shewchuk and Chang {1985) have considered scheduling problems with
recyclable resources, Le., renewable resources whose availability expives after a
given lifespan and which may be reused after a certain repair time (like entters
that have to be re-gronnd from thne to time). Such a recyelable resource can be
viewed as the combination of a clossical renewable resource and & cumulative
resonrce keeping the residnal time before recyeling becomes necessary,

Of course, cumnlative resonrces can also be nsed to formmlate part avail-
ability constraints arising, e.g., in construction projects or assenmibly mamfac-
turing {see, o.g., Kolisch 2000, who has devised anixed-histeger linear program
for scheduding in assernbly envivomments). I certain intermediate products
represent common parts, which are components of different subassernblies or
final prodncis, one has to decide on the sequence in which completed iterns of
those conmmon parts are allotted to the regpective prodncts into which they
are installed {assigmnent-sequence problem, of. Newmann and Schwindt 1997).
The concept of ennmiative resonrecs permits to integrate the assigmment-
seguence problem into the resonrce alloecation problem (see Section 6.11. A
further application of cunmlative resonrces v the context of assembly man-
agement is the modelling of spatial capacily constraints, which are dne to
the limited assembly area. Kolisch and e {2000 have developed schedule-
tmprovement methods for asscmbly seheduling problens including the latter
type of constraints {see also Kolisch 20015, Ch. 18).

The case of general comulative resources has been congidered by Nenmann
and Schwindt {2602), who have disenssed stmctural ssnes and have proposed
a branch-and-bonnd algorithon for project schednling snbiect to hnventory
constraints, Constraint-based methods for solving scheduling problems with
eumulative resonrces have been developed by Beck {2002) and Laborie (2003).
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For what follows, we assume that cunutative resources are depleted and
raplenished discontinuonsly at the occurrence of eertain events like the starts
and completions of real activities. Accordingly, we associate the resource re-
guirements with events fustead of real activities, and we represent the project
nnder study by an evenl-on-node network {see Subsection 1.1.2). The case
where cumulative resources are replenished and depleted continuously over

the processing thine of aclivities is treated in Section 5.4,

1.3.1 Resource-Feasible Schedules

Let Y be the set of cumulative resources, For each regource & € K7 4 mini-
FHET %m(‘rzton E(,\»"( or safeiy siack b € ZU{—%}@} and a Iﬁd}(iilliifﬂ imf(-‘nt.m‘y

a}jﬁe} Tequi ement i (Z of CVeRE § & V‘ f(n PESOHECE k. -zqufsz Lhe increase
in the inventory level of resonrce & at the occurrence of 4. vy s positive if ¢
replenishes & and negative if ¢ depletes k. For example, a replenishing event,
may represent the completion of some real activity producing an intermediate
product that is stocked b resource &, whereas a depleting event may coin-
cide with the start of some real activity consuming the intermediate produet,
Another cxample of replenishing and depleting events are progress payroents
received and dishbursements for materials and subcontractors. Resource re-
quirement rop can be regarded as she wndliol inventory level in resource k. We
assnine that

Ro< S rp <Ry (keRrM (1.19)

eV
which ensures that the mventories ), eve Tik of resources £ & RY ab the
project lermination neither fall below the safety stocks Ky nor exceed the
storage capacitios Ry
Now let V& = {i € V¢ lry < 0} and V&' e {5 € V| 7y > 0} denote
the sets of events depk\tmfr and wpiomsizmm respectively, resource & ¢ R,
Given a schedule 5,

A(S,8) = i € VO] 8 < 1)

is the active set of events that bave taken place by time ¢ and thus determine
the inventory level in resource b € RY ab thme 1. By

ri{ G, ) e Z ik

HEALS LY

we denote the invenbory level of resource & € ®Y at time ¢ given schedule 5.
7S 8} corresponds to the cumulative resource demands for resource & i
time interval B,1] The righl-continuous step function vz (S, ) is again called
the loading profile of resource k. The cumulotive-resource constrainis can he
writien as

B <riS,6) <R, (keRY, 0<t<d) {1.20)
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Definition 1.19 {Resource-feasible and feasible schedules). 4 sched-
wle 8 safisfying the cumudative-resource constraints (1.20} is colled resource-
feasible with respect to cumulafive resources k € RY. The sei of ull resource.
feasible schedules is denoted by Seo. & 1= S N Se ds the set of all feasible
schedules.

Notice that conditions {1.19) are necessary and snfficient for the existence
of a resom ce-feasible schednde. Under conditions {1.19), a resource-feasible
schednle is obtained by schedwling all events atb tine 0,

Tlie basic resource-constrained project scheduling problem with cumaulutive
resources can be stated as follows:

Minimize f{S)

subject to § € Sp N Se (1.21}

Definition 1.20 {(Optimal schedule). 4 feasible schedule S solving the
resource-constrained project scheduling problem (1.21} s colled optimel,

Hemarks 1.21.

because the storage capaciby of resource k can be taken to account by
itrodncing = fctitions resonrce &' with By, = ~ Ry, By = oo, and vy =
------ g for all £ € V¢, Siuee Sp remains nuchanged when adding some inleger
r & & to roy, I, and By, we may in addition assmme Lhal R, =0for
all ke R

{b} The resource-coustrained project schednling problem {1.8) with repewable
resourees is a special case of problem {1.21). To forrmilate the renewable-
resource constiaints in terms of temporal and cumulative-resonrce con-
straintg, we replace cach real activity £ by two evenls activities ¢* and ¢
with &2 = % = p;. For each renewable resonrce k € R?, we intro-
dusce a cipmdative resonrce & with safoly stock Ry, = 8, storage capaeity
Ry = oo, as well as requiirements rop = R, Tt b = O and rpp = —rgg,
range e 1p for all real activities 4 @ Ve

iy analogy to Section 1.2, the problem withont temporal constraings is
termed femporal relazation. The resouwrce relazetion again coincides witls thne-
constrained project scheduling problem {1.2).

The NP-liardness of finding some feasible schednle follows from the fact
that first, the respective problem for the case of renewable resonrees is NP-
hard {cf. Theorem 112} and that second, renewable-resource constraints can
be expressed by temporal and ammlsbive-resonrce constraings withont chang-
g the order of magnitude of the problem size. The following theorcm shows
that, unlike the case of renewable resources, the problem remains NP-hard
even if all maximuon tine lags are deleted.
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Theorem 1.22 (Neumann and Schwindt 2002). The following decision
vroblem is NP-complete.
Instance: A project with one cumuletive resource of infinile storage
capacity, with & = 8 for cll (4. 7) € £, (4,7} # (n+1,8), and with
an arbitrarily lovge project deadline d.

Question: Does there enist a fensible schedule?

Proof. Clearly, the resonrce-feasibility of a schedule S can be verified in poly-
nomial time by evaloating the resonrec constraints for all k € RY and all

contained in NP,
Consider an instance of the NP-complete decision problem 3-PaRrTirion
{ef. Garey and Johnson 1879, problem SP15). Given a set T of 3v indices

t=1,..., % with sizes 2{1) ¢ N and givenn a bound M € N euch that M/4 <
s(i) < M/2 for all ¢ € T and 37 .7 s{i} = vM. The question is whether
or not 7 can be partitioned into v sets Ty,. .., 7, such that Zierﬁ 51} =

M for all 1 = 1,..., v An equivalent instance of owy decision problem can
be constrocted as follows. Besides the project beginning 0 and the project

termination n 4 1, set V¢ contalns n = 4v events £ = 1,.. . 4, There is one
cumulative resource with safety stock B = 0 and infinite storage capacity
B = oo, The requirements for the cumulative resource are ry = ryaq = O,

fore=1,... 3 anddr; = —MTovi=3+1,..., 4 In addition,
we define » — 1 omishnum tioe lags 45 = 1 for é = 3v 4+ 1,. . 4v — 1,

which preveni ihe shimultaneons ocenrrence of any iwo depleting events. Due
to Km0, each unit consumed must immediately be replenished, which can be
achieved precisely if the replenishing events can be assigned to the depleting
cvents such that at ench depletion time 1, the total replenishment by those
events 3 = 1....,3r with 5, = { equals M. o

1.3.2 Forbidden Bets and Delaying Alternatives

In the case of cumulative resources, we have to consider depletions and re-
plenishents of resources. Moreover, in addition to upper bounds Ry, there
are lower bounds Fi, on the inventories (k€ R7). This results i two differ-
cnt types of {orbidden sets: so-called surplug sets if the storage capacity is
exceeded and shortage sets if the inventory falls helow the safety stock,

Definition 1.23 (Surplus and shortage sets). For a resource K e R, o
set of events F CV*® s called a k-surplus set if

F s termed o minimal b-surplus sef o +F i o k-surplus set and there 4s no
k-surplus set ¥ F with FAF QO VE and no kesurplus set F' O F with
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Fis termed o minimal k-shortage set if F is a k-shortage set and there s no
k-shortage set F' C F with FNF' VS and no k-shortage set F7 D F with
FI'Y\F ¢ V"’ By fjf' and F we denote the sels of oll misummal k-surplus

(;.nd all mm?.ma,i k-shoriage sets, respectively.

Note that one and the same set F can be a surplus set with respect o
a resonrce A & RY and a shortage set with respect to a different resource
£ oe RY. I the following, we refer to sets F bemmg k-surphis or k-shortage
sebs for some resource b € WY ag forbidden sets. A minimal forbidden set is o
minimal k-surplus or a minhual kshortage set for some resource & € K.

Remork 1,24 We asswrme that B, < 0 and Re = & for all kb ¢ RY, which

ensures that F = s not a4 forbidden set, Tt follows from Remark 1.21a that
ghis comvention does not mean any loss of generalily,

Sirmilarly to the case of renewable resources, the concept of wduimal de-
laying alternntives can be nsed for breaking np several minimal forbidden sets
ol oLce.

Definition 1.25 (Delaying abervative). Let F be a k-surplus set (a k-
shortage sef). B C F is called o delaying alternative for F and k if P\ B
not g k-surplus set {(not a k-shortage set). If additionally B is Cminimal in
the set of all delaying alternalives for I and &, we speak of o minimal delaying
alternative for F and k.

The following two conditions (1,22} and {1.23) are secessary and sufficient
for n set B C V® to be a minimal delaying alternative for F and &,

Z T Z ri 2 Byl (122}

EFPB PEFNE
E v +ominrgg > B M\Z v Frnax v < ) {1.23)
sl je i el JEi
B YAy

From {1.23) it imunediately follows that mintmal delaying alternatives for sur-
pius sets only contoin replenishiug events and that conversely, minimal delay-
ing alternntives for shortage sets only contain depleting events,

To prove the basic theorem that will show how to resolve resource conflicts
i a systematic way, we need the following preliminary lemma.

Leinma 1.26 (Newmann and Schwindt 2002}.

() For each k-surplus set F, there f’mfcts some sot F' e FF satisfying the
conditions § 4 F' 0 V" C Fn V‘ and F'yVE D EPNVE

b) For cach k-shoriage set ', there crists some set I & satisfyying the

by F h k-short 1 1 2 F' e Ff sati t
conditions § £ F (1 V¢ C Fnve and 70 VC 2N V‘i
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Proof. Let F be a hesurplus set. We construct a minimal A-surplus set &
satisfying the condition of {a} as follows. We set F':= F and scan the events
F € FnVE . Bvent j is removed from set F/ if F/\ {7} ts still a k-surplus set.
Remark 1.24 implics that the rosniting‘ set FY contains a replenishing event.,
Then, we scan the events § € V¥ N\ F and add j to set F7 if MU {5} is
still a k-surplus set. Consequently, for all events § € /' replenishing resource
k, F' 3 {4} is no longer a k-surplas set and for all events 7 ¢ P depleting
resouree K, YU {5} is nol a besarphss set, either. Thus, 7 represents a
minimal A-surplus sel meeting the condition of {a). The reasoning for a k-
shortage set F'is analogous, 1

Proposition 127 (Neuwmann and Schwindt 2002}, Let F be o b-surplus
set fresp. keshortage set). Set I3 vepresenis a minimal deloying adternative for
F and & if and ondy if B is an C-minimal set f(mta,wmg one, event j € Ve f
each mm?mai k-surplus set F' & f“+ wiEfh F"RV" T FN V" and F”"}V"
Frve (?’T'Sp one event j € V¢ of m(fa mm?mai k- sh(}rmq( sel F g }k_
with F'mive CFaVE and }f”ﬁ Ve DENVE i)

Proof. Let F' be a k-surplns set for some ke RY
Sufficiency: We consider a set B satisfying

F Ve nB# 6 forall F' ¢ FY with
'y Vg' ¢ R av;* and F Vg‘ DFAVE

(1.24)

ma 1.26 nn;)h{m the {*mst{*m ¢ of a 5ot f” = .?:};' W 11,11 F"ﬂvk - (F‘\B)RV‘

and oV e (FAB)NVE . From F'nVE CF\BINVE it then follows
that ¥/ V( NB =@, whic}'} contradicts the assumplion. (Jonse(;uent}y, we
have Z;‘M\B kS By, for any set B with property (1.24), and thus each

Caminimal set B mecting condition {1.24) is a minbnal delaying alternative,

Necessity: Now let B be a minhnal doiayixw alternative., We assnme the eXig-
tence of & set F' € F7 with F' 0 Ve Fn Ve P aveE D PNV,
and F'nve N B i . C}m}?\f we have rj;v > 0 for zdi J € B, which
then zm;)hm B V" s Bobe, FP B s §and FYow BN B. Thas,

ZJ“,TJR i E:j@;\B?_-;A-. = X:}G_F\B Tin = "ﬁk, e, FY O onot a kvsm‘lz)ziis
set, which contradicts the assumption. Moreover, we have 3 . jerg Tik 2 i
for all subsets B ¢ B which zmplms that for each B ¢ B, there is a set
F' e F} with P/ V“ CFAVE and F'n Ve B (%w the proof of
mff(,}(,m.y}. Thus, B is ¢ }m}.zmadi i the set of all sets satisfying (1.24).
The proofs for the case of a shortage set F are analogous, ]

Algorithin 1.6, which is a variant of Algorithm 1.4, shows the correspond-
ing recursive procednre used for comprding the set B of all minhimal delaying
alternatives for a forbidden set F and a resource k. Shice the project begin-
ning 0 may be contained in minimal delaying allernatives, the procedure is
tnvoked by MindmaolDelayingAlternotives{F &k, —1).
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Algorithm 1.6. MintmalDelayingAlternatives(B k1)

anut A pr ojwt @ ferhiddozz set I3, a resonree »L an fndex 7'

mm(]} Y }3 } > £,

i B satisfies (1.22) then (= 5 is delaving alternative =}
i 1 satisfies {1.23) then {+ B s minimal delaying alternative =)
B B {BY,
else
for all 3 & B with § > ¢ do MinimalDeloyingAlternatives{ B\ {7}, %, 7}

1.2.3 Breaking up Forbidden Sets

The following theorem provides a sufficient and vecessary condition on the
resource-frasibility of schedules with respect to cummulative resonrces,

Theorem 1.28 {Neumann and Schwindt 2002}, A schedule § is re-
source-feasible if and only o

(a) for each F' € F with k € R7, there cwist two events § € F 1 Vk"' and
ie V7 \F such that §; = 5, and

(b} for eac, ?a Foe Fy uith k € RY, there exist two cvends § € FO VY and
i V( NF su(}? that 5; = 5;.

Proof Sufficiency Let 8 be a schiedule with v.{S,1) > By for some resonrce
k& RY aud some point in time ¢ 2 0. Lewnra 1.26 then provides the axzsluzco
of a minimal k-surphus set £ € F+ for which § #£ Fn Vg C A5 G0 VL
and Fovye 2 AS, Ve R’iou‘owr (1,19} eusures that Vi \ F # .
Due to FVy C A(S, 1) we Emvc Sy <tfarallje B0 ‘/ Izr asddtitian,
VEANF G V“ Y ALS, t) mmplies S5; > tforall 1 € VI If, ’.i.}ms‘ 5, < 8
holds for alt j € FOV and alli € V¢ \F, which contradicts condition (a).
Stmitarly it can be s?.zowz.}. that from a shorfage in some resource & ab a time
£ > (it follows that condition {b) is not met.

Necessity: Let F e F f be a mininal -surphs set violating {a}, 1.e., for all
jeFn ka’w and alli € V& \F, we have S; < 8, From Remark 1.24 it follows
that F' containg an event replenishing resource & Let 1 == maxyeprvet Sy be
the point i thune at which the lagt replenishing evenl 7 € F oceurs. Due
to N Ve - A(S ) m'zd (V“_ \ F‘) M A(S ?) = @ we 0E‘3mizz ?'k(S t} >

dcait W}ti} &zz*ziogjomfv £

Theorem 1.28 states that any resource canflict caused by the ocourrence
of the events of some forbidden set can be resolved by adding precedence
copstrainty S, = 5 o the original temporal constraims. As a consequence,
the set S¢r of all resource-feagible schedudes represents a nuion of polyvhedral
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cones, and the set § of all feasible schedules again is a fnite unton of hite-
gral polytopes. Since each project scheduling problam with renewable-resounrce
constraints can be represenied as an equivalent project schednling problem
with cumulative-resource constraints, this umion is generally discomected.

Similarly to the case of renewable resonrces, forbiddoen sots F' ean be broken
up by introducing {(ordinary} precedence constraints or disjunctive precedence
constraints, Let F be a Bsurplis sot for some resemee & and let B bhe some
minimal delaying alternative for F and & Then we may cither hopose a set
of precedeonce constraints

$,>8 (jeB)

between some depleting ovent ¢ from set 4 = VE \ F and all replenishing
covents 7 from set B or, alternatively, a disjunctive precedence constraing

min Sy = anin 8,

el 7 7 dea
between sets 4 and B, For breaking up a bshortage set !, we may introduce
a scl of precedence coustraints

S =8 (¢ 8)

a corresponding minimal delaying alternative B or by a disjunctive precedence
constraint

min S = min §;
je i A

between sets A and B Since compared to project scheduling with renewable-
resource constraimts, set A typically contains a large number of eloments, the
use of dishmcetive precedence constraints stead of ordinary precedence con-
straints generally leads to a tramendous decrease in the size of the emnneration
tree of branch-and-bound methods.

1.3.4 Consistency Tests

As for project scheduling problems with renewable-resource constraints, cons
sistency tests can be nsed to draw conclisions about temporal constraints
thiat must necessarily be satisfied by resonrce-feasible schedules.

Nommann and Sehwindt (2002) have used the profile test {or calculating
lower bounds on the minimum project duration. Assnme that some cvent ¢
cannot take place before a bypothetical earliest occwrrence thne #;. We add
the corresponding are (0,4} with weight £, to project network N. Lot $% with
E g RY be the {generally not thne-feasible} schedule where replenishinents
artse ag carly as possible and depletions occur as late as possible, Le.

SE o BS;, i rap > 0
Sk = L.8;, otherwise

} (e V)
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The carresponding laading prafile #,{S%, -} theu provides an upper approxima-
tion to the loading profile of auy resource-feasible schednle. If v (8%, ) < B,
for same time £, 1 has thas heen shawn that event 4 must avise before thne £,
e, S <t 1 {notice that cauv{&} is agaiu an mtegral palytope). The con-
tradictian may alsa be derived framn comyparing the storage capacity Hy af
resarces kb owith lower appraximations ta resource-feasible loading profiles
obtained hy scheduling depletions at earliest and replenishments at latest oe-
currence times, Similarly ta the shaving technique far praject scheduling with
renewable resources, the tentative valnes far £ can be tested accardiug ta a
binary search in set [E'S;, LS, IMZ. Henee, the profile test can he implemented
to rnn in Ollog iR nlog n) tine per event 4. Recaleulating the earliest ae-
currence times after having applied the test takes Ofn} time {(¢f. Remark 1.8},
Instead of earliest ocomrence times we can also estahlish bynpotheses on latest
acenrrence tines, which may then be falsified ly the same techniques.

The following balance test has heen devised by Lahorie {2003). Event
h € V¢ must aecur befare event § € V¥ precisely if diy > 0, and 2 may oconr
before § exactly if dyn < 0. Naw let do; > 0. By cansidering all depleting
events that must oceur hefore 7 and all replenishing cvents that may accur
befare 7, wo abtain the npper honnd

Teld) = Z Tigs Z Thi

REVET iy >0 ReVET i<t

an the inventory level in resanrce & just hefore the occurrence of j. By rear-
ranging the terms, F<{7} can also be written as

FRld) = Z Pig o+ Z Thi

fgVedy, ;=0 eVl -
idin {(],(ﬁh_..,- <&

i, as the sum of all requirements that nmst take place hefore 7 and all re-
plenishunents that possibly bt nat necessarily ocenr hefore 7. Now assine
that Ehew:dw}e rae < Ly, which huplies that some af the latter veplenish-
ments st arise befare 7. Lot by, o, fyy e a mnnbering of the events from
set VET () 1= {h € V& | dy < 0, di; < 0} accarding to nondecreasing
earfiest ceonrrence times M55, and let o be the simallest index snch that

I
ST et Y a2

haVeud) ;=0 P

Then § must acenr after thne ISy, , and we ahtain the temporal caustraint
5; 2 ESp, + 1. M distance matrix 17 is given, the thne needed far applying
the balance test ta activity 7 is of order O{|RY|nlagn). Updating matrix D
after having increased ES; takes O{n®} time.

The halanee test can e strengthencd as follaws. We consider one event
i€ V() and we assmne that S; 2 §;. Then upper bamd 75 (F) an the
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hventory lovel in resource k at time 8;—1 can be reduced by all replenishinents

from set V& {§) which cannot oceur strictly before ¢ {and dne to 8; = 5; thus
cannot ocenr strictly before 7). This means that i

7r() - >, hk < By
he ot

Dty 50, din 28

for some k € R7, then it must hold that S; = 5; + 1. This variant of the test
takes O(IR7n) time per pair (2,7} of events.
Sinitar consistency tests can be performed based on the upper bound

e - Eh -
Fipld) = L Tig o+ 2_4 ik
i Vg"u il =B igVE ;i)

o1 the inventory lovel at the oceurrence of event 7 and the corresponding lower
Yo Py Erg
bonnds r(7) and 77 (7).



